

Useful Math Functions 3-D Mazes Step/Trace Programs HiRes Graphic Printouts p-System Comparisons

Sharing Information

I recently received a letter from a reader enquiring whether he could use one of our programs in a software package he was developing. As in any healthy field, a fair amount of cross-fertilization takes place within. This is particularly true in the world of software development where one great idea will spawn another.

Now in the midst of all of this comes that ancient cry of plagarism. It is said that "mimicry is the sincerest form of flattery" but not all authors enjoy such attention. Where do you draw the line between what is plagarism and what is a logical or original development of an idea? It seems more and more that this is a fine line - one that is made by the creator rather than the lawyer. Times are changing. There was a time when everyone 'borrowed' ideas from everyone else. Centuries ago in the music world this was common practice. But attitudes changed over the years to the point that people horded their ideas as their own and sued anyone who dared approach any similarity to their mental offspring. Now once again the tides are shifting in the other direction. This shift is putting many wonderful and original ideas in our hands. It is furthering new creations and saving a lot of wasted time in the process.

How is this happening? To start with, for the first time software producers are providing software that is not copy protected. This allows for backup and working copies to be easily made. Now you can have multiple copies of handy programs on many disks, freeing you up from playing musical disks. Beyond this there has been an even bolder step taken by some publishers. They state you can utilize their product in your own software without any penalty and at nominal cost. The usual agreement is that you simply register yourself and the product with the publisher and give acknowledgement of the use of the program. Penguin Software has done this with a number of their graphics packages. In particular I cite their Graphics Magician Picture Painter which is not copy protected and allows for its use in other products. Indeed, many people have taken advantage of the offer. In permitting use of the Graphics Magician, Penguin has saved people hours of laboriously drawing graphics, since it allows you to create and save hundreds of pictures on a single disk where normally only 11-15 pictures would fit. Here is a perfect example of how this willingness to share ideas frees up an author to do what he otherwise might not be able to do because of time expenditure or lack of expertise. He suddenly can add professional graphics to a software package that he is working on without any difficulty. He is not forced to learn what may be a completely foreign area of programming, but can instead benefit from someone elses expertise and experience.

MICRO feels that its place is one of a disseminator of knowledge, a place where people come to learn new things and share what they have learned. In this spirit we encourage people to incorporate what they discover in MICRO in their own work. The word incorporate is very significant in this context. If you are just using the material for your own personal benefit, then that is your right. That's why you buy MICRO in the first place.

However, MICRO can not allow its major programs to be copied and distributed by others - be they individuals, companies, computer clubs, etc. This would lessen the marketability of MICRO Magazine, the MicroDisks, books and software packages. The smaller programs and utility routines are a different matter. If you have a project that can benefit by incorporating some MICRO material, please contact us. Normally we will grant you permission to incorporate the material in your product, subject to signing a license that protects all parties and agreeing to a proper acknowledgement. In this way we feel we serve you better and make a greater pool of ideas available to more people. Perhaps a program that we publish will find its way into the hands of someone who will turn it into something we can use. And then, in turn, we may be inspired to create something else which will start the circle again. The end result is a continued growth personally and professionally for all involved - you and MICRO.

What \& Norowo

Mark S. Morano
Technical Editor

On The Cover

The tortuous passageways of Carnaervon Castle in Wales are the scene of our 3-D Maze. The usual warning is, of course, given to all foolish enough to enter, printed with the Atari/Epson custom characters offered by Mike Bassman's program.

Photo by Cindy Kocher

Featured This Month

This month we offer eight complete major programs on a variety of topics, plus an excellent look at the 68000 machines and their operating systems.

Truly 3-D Mazes - generate truly 3-D mazes with a minimum of effort and memory. You get a rat's-eye view of the maze corridors as you "walk" through! And it all starts with a cube and $31 / 2 \mathrm{~K}$ of RAM!
Alter Track and Sector - allows the user to dump, in hex, any sector on a disk with VIC/Commodore format, then modify any byte in that sector. Rewrite lost headers without loss of data!
Extended Precision Arithmetic - if greater mathematical precision is needed than is usual in BASIC, for statistical calculations perhaps, then this is the program for you. An interesting application is included in what may be the only program for calculating the lunarbased Jewish Calendar.
Relocatable Step/Trace - this step and trace routine can be easily moved to any part of a program.
The UCSD p-System - a careful, lucid explanation of how the fast, flexible p-system works and why it is becoming THE 68000 Operating System. Also, a review of six 68000 -based microcomputers which puts the new systems in perspective.

Atari Character Printer - creating an unending array of different character fonts on your Atari screen can be fun, but now you can also print them out on paper with complete accuracy!
Useful Math Functions - save time and mathematical aggrevation with a collection of defined functions.
C-64 Graphic Dump - this "perfect'" dump works either in HiRes or multi-color, allows large size printouts and is very fast. This month, learn to interface 5 major commercial packages - whatever you generate you can now dump.
HILISTER - highlighting lines of text and programs can be useful for emphasis or clarity when discussing material on the screen in business meetings, classrooms, seminars. This program also allows easy movement within a program or text.

NMCRO"

Publisher/Editor-In-Chief Robert M. Tripp
Associate Publisher Cindy Kocher
Production Manager Jennifer Collins
Technical Editor Mark S. Morano
Technical Editor Mike Rowe
Advertising Manager William G. York
Dealer Sales Manager Linda Hensdill
Circulation Manager Linda Hensdill Office Manager Pauline Giard
Shipping Director Marie Ann Wessinger Comptroller Donna M. Tripp

Accounting

 Louise RyanContributing Editors Cornelis Bongers

Phil Daley David Malmberg John Steiner Jim Strasma Paul Swanson Richard C. Vile, Jr. Loren Wright

MICRO is published monthly by: MICRO, Chelmsford, MA 01824.
Second Class postage paid at:
Chelmsford, MA 01824 and additional mailing offices.
USPS Publication Number: 483470. ISSN: 0271-9002.
Send subscriptions, change of address, USPS Form 3579, requests for back issues and all othe fulfillment questions to:

MICRO
P.O.Box 6502

Chelmsford, MA 01824
or call 617/256-3649.
Subscription Rates: (per year):
U.S. $\$ 24.00$ or $\$ 42.00$ for two years

Foreign surface mail: $\$ 27.00$
Air mail: Europe $\$ 42.00$
Mexico, Central America, Middle East, North Africa, Central Africa $\$ 48.00$ South America, South Africa, Far East, Australia, New Zealand $\$ 72.00$

Copyright © 1984 by MICRO. All Rights Reserved.
for the Serious Computerist
AUGUST

15 Relocatable
Chester H. Page

10 Constructing Truly 3-D Mazes

Dr. Alan Stankiewicz

Step and Trace program can be moved easily to any part of the program.

Get a rat's-eye view of the maze corridors as you "walk" through them.

Interface with major commercial packages to create a full-page graphic printouts.

32
 Alter Track and
 Sector

Edwin L. King
36 The UCSD p-System:
DeFacto Standard 68000 Operating System?

Paul Lamar \& Richard Finder
Atari/Epson Custom
Characters
Mike Bassman

47
 Extended Precision Arithmetic in BASIC

Rolf B. Johannesen

A careful, lucid
explanation of p-System and a comparison of six 68000-based computers.

Create and transfer almost unlimited customized alphabets to paper accurately.

52
 HILISTER - A Study and Teaching Aid

J. Morris Prosser

58
Useful
Functions - Part 3
Paul Garrison

65 Interface Clinic: A Major
 Hardware Interface

Ralph Tenney

Move easily within your programs and highlight parts of text or listings for emphasis, drama, clarity.

Save time and mathematical aggrevation with a compilation of defined functions.

Design a major hardware
interface - a receiver board for the 32 K CoCo.

Product Reviews

11 When I'm 64	Sophisticated music synthesizer with vocal parts and animated face.
11 BASIC Building	Over 60 sample Blocks all facens describe beginning programming.
11 Write Now!	Professional word processor with 80 column display, compatible with most printers.
12 Songwriter	Songs are recorded in a piano-roll style, making song composing fun and easy.
12 Clone Master	A disk utility designed to create backup copies of all or parts of user- owned disks.

12Advanced System Editor	An extended Pascal System Editor with many enhancements and special features.
13Total Health	A personal health monitor to keep track of nutrition on a daily basis.
13 Commodore 64	Over 50 BASIC music programs to enjoy and learn with.
14 Magic Memory	Address-book type of data-base system for the Apple.
14 64 Doctor	Total diagnostic program for the C64.
14 Computer	Learn automotive diagnostic methods and keep track of auto maintenance.
Mechanic	

Departments

2	Editorial	61 CoCo Bits
3 Highlights	68 Books	
8 Feedback	12 Reviews	
10	Spotlight	62 Commodore Compass

69 Catalog
71 Lyte Bytes
72 Advertiser Index
72 Next Month in Micro

It all adds up
 HONFF COMPUTFRS
 AxTOM PRTENPR8

850 Interface	\$159.00
1010 Reconter.	\$71.99
1020 Calor Printer	\$219.00
1026 Dat Makrix Printe	\$299.00
1027 Letter Quality Pr	\$269.00
1030 Direct Connect M	\$98.99
1050 Disk Drive	\$349.00
1064 Memory Module	\$125.00
'Touch Tablet/Softw	\$64.99
Light Pen/Software	\$72.99
CX22 Track Ball	\$39.99
7097 Atami Logo.	\$74.99
4018 Pfot (Home).	\$57.99
408 Pfiot (Educ.)	\$99.99
6036 Atan Pliok.	+77.99
5049 VistCale.	. $\$ 149.90$
488 Communicator	$\$ 11995$

AT-100 Atard Interface Printer \$ 239.00

AT-100 Atar Interface Prin	
	GP-550 Atari Bidirec
GP-700 Atari Color Printe	
GP-550 Parailel Printer. BMC	
BX-80 Dot Matrix C.ITOH	
	Gorilla Banana.
Prowriter 8510p	
Prowriter 1550F.	
AlO (18 cps)	
Hoc Dot Matrix	
	Fl0-40.

$\$ 799.00$
$\$ 30900$
$\$ 389.00$
$\$ 669.00$
$\$ 74900$
$\$ 136900$
$\$ 1799.00$
2410 .CALL
$\$ 47900$
$\$ 509.00$
$\$ 1449.00$
$\$ 44900$
$\$ 119.00$
$\$ 449.00$
$\$ 549.00$
$\$ 549.00$
$\$ 89900$
$\$ 29900$
$\$ 399.00$
.$\$ 75.00$
$\$ 599.00$
$\$ 869.00$ $\$ 1699.00$
$\$ 469.00$
$\$ 649.00$
$\$ 649.00$
$\$ 459.00$
MODEMS

CORAPUTERE MAADL

west
VISA: 800-648-3311
In NV call (702)588-5654, Dept. 125
Order Status Number: 588-5654 PO.Box 6689
Statelline, NV 89449

canada

Ontario/Quebec 800-268-3974 Other Provinces800-268-4559

In Toronto call
(416)828-0866, Dept. 125

Order Status Number: 828-0866 2506 Dunwin Drive, Unit 3B Mississaugar Ontario, Canada LELIT1

east
800-233-8950
In PA call (717)327-9575. Dept. 125 Order Statis Number. 3279596
Customer Service Number: 327-1450 477 E. 3rd St., Williamsport, PA 17701

No higk, no degostt on c.oD. orders and no waiting period for certified checks or money orders. Add 3% (minimum $\$ 5$) shlpping and handing on all orders. Langer shipments may require additional charges. NV and PA residents add sales tax All items subject to avalabilty and prine oharige Cal: ioday for ous catalog

APPLE/FRANKLIN DISK DRIVES yICRO-8CI

APPLE IIO ETARTIR PACK
64 K Apple IIe. Disk Drive \& Controller Bo Column Card. Monitor II \& DOS 3.3 COMPLETE.............................CALL
Call on all other Apple Modela

Vis:-on Application Manager... $\$ 79.99$
Visi-on Application Manager. $\$ 79.99$
Visi-on Calc........................... $\$ 269.00$
Visi-on Graph. $\$ 179.00$
Visi-on Graph..................... $\$ 179.00$
Vision Word................. $\$ 249.99$
Optical Mouse....................... 189.99

A8T RE8FARCH	
Six Pak Plus...........from.	. $\$ 279.00$
Combo Plus IL............from.	. $\$ 279.00$
Mega Plus.................from.	\$309.00
I/O Plus......................from	\$139.00
QUADRAE	
Quadlink	\$479.00
Quadboard as low as.	\$28900
Quad 512 Plus ... as low as	\$249.00
Quadcolor...... ... as low as .	\$219.00
Chronograph	\$89.99
Paraliel Interface Boarc.	\$89.99
64K RAM Ch	\$59.99

ACE 1000 Color Computer........CALL ACE PRO PIJS System.

CAII ACE 1200 Office Mgmit. System.CALL ACE PORTABLES CALL

Esommodore	8X-84Portable..	. $\$ 830$
CBM 8032............................ 8898	CBM 64.	\$199
CBM 8096....... $\$ 869.00$	Cl541 Disk Drıve	\$24900
CBM 9000 $\$ 999.00$	01530 Datasette	\$69.99
B128-80 $\$ 769$ -	C1520 Color Printer Plotter	\$129.00
8032 to 9000 Upgrade.......... $\$ 499.00$	M-801 Dot Matrix Printer	\$219.00
2031 LP Disk Drive.............. \$299.00	Cl526 Dot Matrix/Serial	\$290.00
8050 Disk Drive.................. $\$ 949.00$	Cl702 Color Monitor	\$259.00
8250 Disk Drive.................. $\mathbf{\$ 1 9 9 9 . 0 0}$	C1311 -Joystick	\$4.99
4023 Printer $\$ 379.00$	C1312 Paddles.	\$11:99
8023 Printer $\$ 569.00$	cl600 VIC Modem.	\$89.99
6.400 Printer $\quad \$ 139900$	C1650 Auto Mdoers	\$89.99
Z.RAM $\$ 499.00$	Logo Sa	\$49.99
Sulicon Office. . $\$ 699.00$	Pilot 64	\$39.99
The Manager \$199.00	Word Fro 64 Flus	\$5999
Sortrom \$12500	Calc Result 84	\$85.99
VisiCalc............................... \$159.00	Calc Result Easy	\$39.99
PROFSEsIONAL EOYYWARt	Codewritar 64...	\$75.99
Word Pro 2 Plus................... $\$ 159.00$	MCS 801 Color Printer..	\$499.00
Word Pro 3 Plus................... $\$ 189.00$	DPS LO1 Daisy Printer....	\$459.00
Word Pro 4 Plus/5 Pluseach... $\$ 279.00$	Magic Voice Speech Module	\$54.99
Infopro $\$ 17900$	Desk Organizer Lock	\$49.99
Administrator ... \$399.00	Vidtex Telecommuncations	\$3495
Power ... $\$ 7999$	MSD	
	SDL Disk Drive	\$349.00
	SD2 Disk Drive	\$59900

Ir NV call (7O2)588-5654, Dept. 125 Order Status Number: 588-5654 P.O.Box 6689 Stateline, NV 89449

ABAOL

canada

Ontario/Quebec 800-268-3974
Other Provinces800-268-4559

Order Status Number: 828-0868 2505 Dunwin Drive, 0 nit 3B

data systems

PC COMPATIBLE 16 BIT SY8TEMS 2.150 PC

2-160 PC SOFTWARE

SOFTWARE				
	C-64	Auari	IBM	Apple
Electronic Arts				
Ons on One	829.99	\$29.99	\$29.89	\$29.99
Music Construction	\$29.99	\$29.98	\$29.99	\$29.99
Pinball Construction	\$80.99	\$29.99	$\$ 29.99$	\$29.89
Cut ee Paste	\$5999	\$39.99	839.98	83999
Hard Has Mack	\$259\%	\$2790	\$8799	\$2799
Lntocors				
Witiess	\$20 90	\$2999	\$2999	\$2999
raide	\$29 99	\$2999	\$29 99	\$29 99
Deastine	\$2999	\$2999	\$29 90	82959
Pianetail	\$29.99	\$29.99	\$29.39	\$29.99
Erchanter	\$29 89	\$29.99	\$29.99	029.99
Zorkl.2.3 ea	\$27.99	\$27.99	827.98	827.99
Suspended	\$29.99	\$29.88	$\$ 29.99$	\$29:99
Sorcerer	\$29.99	489.99	\$29.99	$\$ 29.99$
Atarsoft				
crous	\$3599	N A	\$2899	82899
Moer: Patrol	\$3599	NA	\$28 95	\$2899
Ms Pracmar,	\$3594	NA	\$28 99	82899
Peckiar:	\$35 59	NA	\$28 90	\$28 99
Donkey Korig	\$3899	NA	\$2899	\$28 99
Fole Position	\$3599	NA	\$2890	82890
Spinnaker				
. Aerobics.	\$28.99	\$20.99	\$28.99	12899
\therefore Trans	824.99	\$24.90	524.59	424.99
Adventure Creature	\$24.99	\$24.89	\$84.99	12499
Aegean Voyage	\$24.99	\$2499	\$24.98	\$24.98
Snooper Troops 1.2 ea	828.99	\$9899	\$28.98	(188989
Traction Fevar	\$22 90	\$2290	52,299	822.99
Alchasel zoo	\$2299	\$2, 39	$\$ 2299$	\$220 9
In Searct of	\$6at9	\$24 39	\$2498	\$2490
Facemaker	\$20 93	82299	\$23 90	\$2290
$\xrightarrow{\text { Kinder Comp }}$	S1~ 93	\$1799	\$1799	$\$ 1799$
Dynatech				
VisiCorp	\because	..		
Visidale	\$159.99	\$149.99	\$159.98	\$159.99
Visicalc Advancec	N/A	NiA	N/A	\$269.99
pfa:				
weite	N A	NA	\$8999	58979
rapts	Nf.	N A	\$8999	\$7999
Raport	[1 ${ }_{\text {A }}$	WA	\$739	\$79999
Fi,	NA.	NA	\$8999	87999
Soratons * as low as,	\cdots A	$N \mathrm{~A}$	$\$ 1699$	81699

east
800-233-8950
MasterCard

COETINBHTAL BOTTWAET
Ist Class Mail/Form Letter...... $\$ 79.99$
Home Accountant Plus........... $\$ 88.99$ LOTUS
Symphicny... $\$ 549.00$ $\$ 33900$
PROFESSIONAL SOFTVARE
PC Plusthe Bess SYNAPSE

Zentr,

. $\$ 89.99$

Question Mark Unraveled

Dear Drs. Ferra \& Cortease:

After many hours of research, skipping meals, and closing down the library several times, I believe I have uncovered the secret to the North American Rosetta stone discovered by Drs. Ferra and Cortease.

The communications of the Toltecs and Aztecs using Pyramidems of the Moon, I found out, was somewhat slow due to the serial pottery interface required. This led to much experimentation and finally the development of the much more efficient Pyramodens of the Sun. These were parallel devices and required only minor modification to the Adobe software. With the new hardware, everyone had access to the Teotihuacan data bases.

A drawback still remained in data transmission. An Alpha Spatial Scan [ASS] was needed to provide proper displaying on the Ceramic Refined Tritons \{CRTs\}. Plumed Serpentine Software, Inc., with main offices at the Temple of Quetzalcoatl, overcame the
problem and provided the solution and test data to all who requested it.

The test data could be obtained on clay or the more reliable rockettes. It was in 126 position spiral form and was read from the outside inward, breaking on every seventh position creating 18 new positions. The graphic representations of the 18 positions was then reversed and message "WELCOME TO LYTE BYTES" was displayed.

Oliver H. Wardlow, Jr.
Topeka, KS

Editor's Note:

Our thanks to Dave Nicklas of Danvers, MA who was the first to send in the correct solution.

Unusual Software Sought

Dear Sirs:

I am interested in point-of-sale cash registers, bar code readers, and software for liquor store applications.
Cleo McCoy
Marietta, GA

Dear Sirs:
I am interested in Apple II Plus software and related hardware for use in quality control of nuclear fuel.
Hyun Tae Kim
Korea Advanced Energy Research Institute
Chung-Nam, Korea

Dear Sirs:

I am writing to ask if you know where I might be able to obtain hardware and software for an Apple II Plus to operate and control a fish nursery. I am very interested in any information about setting up and operation of computerized fish farms/nurseries.
Joseph G. Bloechl
APO New York

Editor's Note:

If any readers can suggest software to fit any of the above requests, please send name of package, publisher name and address to Letters Editor at Micro.
(continued)

More on the 68000

Gentlemen:

I read with interest Paul Lamar's article on the 68000 in your June issue. Like Paul, I am enthusiastic about the 68000. As I repeatedly read in that issue, 68000 will indeed be the 6502 of the 1980's. If I were more tactful, I would refrain from pointing out that I made exactly that assertion to Bob Tripp three years ago.

On page 45, Paul has an incomplete quote from the 'DTACK GROUNDED newsletter. In its incompleteness, it appears to be wrong. Paul asserts that the $68000 / 16081$ combination can perform a double precision multiply in 23 microseconds and that is 3 times faster than an 8086/8087 combination. Since most folks familiar with the 8087 know it performs a double ${ }^{1}$ precision multiply in 27.4 microseconds, the figures do not appear to jibe.

A more complete explanation: the $12.5 \mathrm{MHz} 68000 / 6.25 \mathrm{MHz} 16081 \mathrm{can}$ perform the double ${ }^{1}$ precision operation $A=B$ * C, where A, B and C are double-precision operands kept in memory, in 23 microseconds. A 5MH 8086/8087 takes 9 microseconds to load A, 9 microseconds to load B, 27.4 microseconds to perform the multiplication, and 20 microseconds !!! to store the result in memory: a total of 65.4 microseconds. That does not include the 'EA' (effective address) time, so a practical Intel system is in fact about 3 times slower than the $68000 / 16081$ system. (The 23 microseconds for the 68000/16081 system represents an actual measurement of a loop repeated $1,000,000$ times with the loop overhead subtracted.)

As you can see, the 8086/8087 system has a considerable overhead associated with transferring floating point operands to and from memory. The reason is that the data representation used by the 8087 internally is not the same which is stored in memory, and the conversion takes an appreciable amount of time. By way of contrast, the Nat Semi 16081 math chip uses an internal data representation which is identical to that which is stored in memory. Also, the actual multiplication takes place much faster - 10 microseconds vs. 27.4.

There are other differences between the 8087 and the 16081 , such as the fact that the 8087 does most transcendental calculations as a single command and the 16081 does not, so the 16081 is going to be a lot faster than the 8087 when performing linear algebra or matrix math (where most operands are kept in memory! while the 8087 will be faster than the 16081 when calculating square roots or arc tangents. Nothing is simple these days, is it?

A very limited number of samples of 8 MHz 8087 s exist and so does a very limited number of samples of 10 MHz 16081s. As far as us peasants are concerned, neither part really exists right now.

Finally, the application note which Nat Semi is preparing shows a 68000 slowed down to the same clock speed as the 16081 , which is the way the Nat Semi 16032 microprocessor has to work with the 16081. Nat Semi does not want anybody to know about the way we use the 16081, running at half the clock speed of the 68000 because
such a system can outrun the Nat Semi combo when nonfloating point operations are being performed.

For the record, Digital Acoustics shipped the first commercial 68000/16081 system in Dec. '83. To the best of our knowledge, we are the only ones actually shipping product today. The fact that lots of folks are actively working on such systems may have something to do with the fact that we published a schematic and a fourpage technical explanation in our newsletter 25, (10/22/83).

Hal W. Hardenbergh
President, Digital Acoustics, Inc.

ANCRO

AN AFFORDABLE 68000 System for your Apple!

68000 Mainframe architecture is now available for 8 bit systems with McMILL.

McMILL features the new MC68008 member of the M68000 family, and offers Apple II, Ile users a no frills, low cost 68000 based development system.

LEARN MORE ABOUT THE "HEART" OF THE LISA \& MACINTOSH SYS IEMS WHILE STAYFNG WHTH YOUR PRESENT II OR He SYSTEM.

MCMILL IS BOTH SOURCE \& OBIECT CODE COMPATIBLE WITH ALL 68000 PROCRAMS, MAKING YOUR APPLE A GBOW BASED DEVELOPMENT SYSTEM!

McMILL is the 68008 based coprocessor board that:
*Fits into any slot on Appla II, Ile or Apple compatible.
*Uses Apple memory and clock for true $6502 / 68008$ coprocessing.

* Comes with ready to run 68000 Fig FORTH and
a $6502 / 68000 \mathrm{MACRO}$ cross Assembler.
* Carrys a full one year hardware warranty.
Features ultimate efficiency in design \& power with a fully loaded system for UNDER $\$ 300.00^{}$

The Lobero Bldg
Box 2342
Santa Barbara. CA 93120
(805) 966-1140/966-4964

Lua/Macintush, Apple are trademarks of Apple Computer inc. Fig Forth otiered is pistic domuin From Mownlarnview Press. 6502/b8000 Cross Assembler Irom S.C Soiware Corp. McwiLL rademark of Stellatom Two Inc.

Distributor

Command Computer Corporation
P.O. Box 5096

Philadelphia, PA 19111

Introduction

In this day and age of such a varied host of computers, peripherals and interfaces, one is left in a state of confusion as how to get them all together. Command Computer Corporation's 'Micro-Match' is a great step forward in helping to resolve this communication problem. It has been designed to 'take the guesswork and inefficiency out of interfacing or interconnecting.' What Micro-Match supports is micros to printers, CRT's, modems and plotters; micros to minis; and micros to mainframes. The product comes in two parts; a two volume product called Blueprints and a second product called Access Forum.

Blueprints

Blueprints is a set of ready-to-use interfaces. There are indices by manufacturer and device type. These indices direct you to sections that list wiring specs, switches and jumpers, and any other pertinent information. Crossreferencing makes it easy and fast to find the specifications and information you need to interface two products. In the Wiring Specs section whether an interface is parallel or serial is confirmed, and a diagram is included showing the actual connections that need to be made on both devices. Switches and jumpers is the other major section necessary in interfacing. This part clearly shows you how to configure your devices using diagrams and notes. The section entitled General Notes is gold mine of information that has been gathered into a handy and readable form. Covering grounding principles, cable length limits, cable wire types, checklists, plug types, and more, it is an invaluable aid in telecommunications. Also provided are Device Notes which show diagrams of the actual units, where the various ports, buttons and controls are located, showing all necessary views for a complete picture. Updating supplements will be provided to each MicroMatch user every quarter. These will keep the user up-todate with new products and their interfaces.

Some of the specific computers and peripherals covered are: Altos, Apple, AST Research, California Computer Systems, IBM, Kaypro, Quadram, Tecmar, Televideo, Hayes, Novation, Anadex, C-Itoh, Comrex, Diablo, NEC, Epson, Okidata, and more. Additionally, users will be able to request 'custom interfaces' for devices not covered in Blueprints.

Access Forum

The second product, Access Forum, is 'an ongoing series of research reports that focus on important products and topics related to the interfacing of microcomputers and peripherals with mini and mainframe computers.' This section is not for the uninitiated but rather is designed with the data processing manager and professional in mind. It is an aid to these people who are searching for specific solutions to their interfacing problems in this area. The solutions that are focussed on are in the following areas: downloading/uploading data files between micros, minis, and mainframes; converting mini and mainframe software to micros; interfacing micros with mainframe-compatible tape drives, card readers, and special input/output devices; connecting micros with TELEX and commercial timesharing networks; micro upgrade paths; converting/porting programming languages; networking micros; converting protocols; interfacing graphics devices, graphics systems compatibility, etc.; integrating micros into 3270, SDLC, and SNA networks. For the users convenience two copies of the Forum are provided which can be easily removed and kept handy.

Pricing

Both Blueprints and Access Forum can be purchased for $\$ 690$ per year. Beyond the initial products the price includes 'quarterly Blueprints supplements with interfaces for devices to be announced in the industry during the coming year, and three new Access Forum volumes on new micro-to-mini and micro-to-mainframe access products and solutions.'

Conclusion

The need for such a product is clear given the ever increasing number of micros, minis, peripherals, etc. The problems associated with telecommunications are often aggravating, time-consuming and difficult. Micro-Match does indeed fill a mitch that has been neglected. And it is what it says it is 'a complete, step-by-step system that
can be used by anyone having minimal computer experience to successfully implement a complete working interface between a wide variety of microcomputer devices and peripherals.' The Access Forum also is an invaluable source of state-of-the-art information as regards micro, mini, and mainframe interfacing. Combined both Blueprints and Access Forum are an investment that can save time, money and unnecessary problems.

Product Name: When I'm 64
Equipment
Req'd: Commodore 64 and disk drive
Price:
Manufacturer: The ALIEN Group
27 West 23rd St.
New York, NY 10010
Description: A sophisticated music synthesizer music system including vocal parts and an animated face. The disk is supplied with 30 short demo songs and a short instruction manual for generating your own music. With the addition of the ALIEN Group Voice Box, an graphics screen face also sing the lyrics of the song. In addition to all of the standard controls (envelope, etc.) the program also has controls for vibrato, glissando, and accents. Lyrics are entered in the phonetic alphabet.

Pluses: A screen editor is supplied to easily modify any of the synthesizer (sound chip) parameters, with immediate playback and correction of input songs. The notes and words are easily edited and the face animated to imitate the lyrics.

Minuses: Any program of this magnitude is going to be difficult to learn to use all its facets without much study.

Skill level required: No previous background assumed.
Reviewer: Phil Daley

Product Name: BASIC Building Blocks
Equipment

Req'd:	Apple II,II + ,IIe - DOS 3.3 (ProDOS available). Also available for Atari and C-64.
Manufacturer:	Micro Education Corp. of America 285 Riverside Avenue Westport, CT 06880

Description: Disk 1: An interactive tutorial in the BASIC language using over 60 sample programs describing all facets of beginning programming -I/O, branching, arrays, strings, graphics and disk access. Disk 2: Basic Design Tool, a M/L runtime debugging tool to help in understanding how programs work or why they don't work. This program is worth the price of the package alone.

Pluses: While the sample programs are good for the beginning programmer, the BDT really makes the package interesting. You can set breakpoints by line number or variable name; run, trace or step the program; and switch between the program's screen display and the debugger display which includes preset variables and their values, the just executed statement and the next statement to be
executed, and stack information about FOR..NEXTs and GOSUBs. The documentation, while short is almost unecessary due to program friendliness.

Minuses: BDT does take up 8 K space (above HIMEM) and pushes the BASIC program above Text Page 2 (it uses Page 2 for its own display), so not all BASIC programs will fit in the leftover space. PEEKing the keyboard (\$C000) also won't work, although you can RUN past those points.

Skill level required: No previous knowledge for Disk 1. Some BASIC programming experience for Disk 2.

Reviewer: Phil Daley

Product Name: Equipment Req'd:	Write Now! Commodore 64 with disk or tape and printer
Manufacturer:	Cardco, Inc. 313 Mathewson Wichita, KS 67214

Description: A professional word processor with 80 column display for sample output, unlimited length documents, search and replace, multiple line headers and footers, justification, block copy and delete and compatibility with almost any printer. You can select screen colors, view help screens, get a disk directory, initialize a disk, rename or scratch files and more, all from within Write Now!.

Pluses: Unless the file is very large (more than 16 K), the program is very fast, since it is entirely in machine language. Usable memory is about 30 K , but files can be chained together. The documentation is excellent with a very good index to find answers to any questions. There is also a cut-out card to indicate what the control/ Commodore functions are.

Minuses: There is no word wrap! Words are broken at the end of the lines. You may be able to tell where you are in 80 column display, and you may not. It depends on the CRT. The search and replace does not function if you try to replace a character with nothing. There appears to be a bug - if you have a full file and replace something with a longer something, it will replace several before stopping, creating a file longer than allowed and full of gibberish at the end. Reloading a that saved file gives a Memory overflow error, which throws away all the gibberish at the end. The manual says that a joystick will move the cursor; mine didn't.

Skill level required: No previous experience required.
Reviewer: Phil Daley

Product Name:	Songwriter
Equipment	
Req'd:	Commodore 64 and disk drive
Price:	
Manufacturer:	Scarborough Systems, Inc. 25 North Broadway
	Tarrytown, NY 10591
Author:	Samuel Wantman

Description: An educational program that makes it fun to learn to write songs. Songs are recorded in a piano-roll style with simple editing commands to alter, add or delete notes. Songs can be saved on disk with 20 songs prerecorded. Tempo is variable; songs can be stopped anywhere and single stepped forwards or backwards. Sound quality is somewhat variable using the function keys.

Pluses: Entering songs is extremely simple whether entering from sheet music or original material. The duration is set $(1 / 4,1 / 8$ th note, etc.) and the pitch selected from a graphic keyboard with cursor keys or joystick. Playback can be immediate. The thorough documentation is easy to read and very complete. This program can easily used by young children.

Minuses: The program only allows single voice parts. Unless you are interested in melody only, or have an Apple, this drawback defeats most of the usefulness of the Commodore sound chip. It also only allows limited sound adjustment.

Skill level required: No prior knowledge needed.
Reviewer: Phil Daley

Product Name: Clone Master
Equip. Req'd: TRS-80 Color Computer,
16K Disk Basic
Price:
Manufacturer: Prickly-Pear Software
9234 E. 30th Street
Tucson, AZ 85710
Description: Clone Master is a disk utility which is designed to create backup copies of all or selected portions of user-owned diskettes. It is not designed or intended for use in the illegal copying of copyrighted software. It will run on $16 \mathrm{~K}, 32 \mathrm{~K}$ or 64 K Color Computers with at least one disk drive. The program will check the RPM of the disk drive before beginning any backup work. If the drive is not within acceptable parameters, an error message will be issued to the effect that the drive speed needs adjusting. Double sided drives are also supported and backup can be done from one side to the other. Any range of disk tracks from 0 to 99 , inclusive, may be backed up. Backup of partial diskettes is, therefore, possible.
1/3
Pluses: Clone Master will copy everything that is on a disk, including errors. It can be used to copy non-Color Computer diskettes as well, which makes it handy as a utility if you have other types of computers in addition
to the Color Computer. With 64 K machines, the backup process uses the entire memory available to perform the backup, necessitating only three disk swaps for single disk drives as opposed to seven swaps for the Disk Basic Backup command. The RPM check feature is a good diagnostic test. Track step rates can be changed and the program itself can be custom tailored to a user's configuration and then permanently saved to disk for future use. Partial copying is a good feature and allows the user to copy only selected portions of a diskette.

Minuses: The user must know exact contents of a disk if partial backup is to be used. There is no provision in Clone Master to view the contents of any disk or the directory.

Documentation: The documentation consists of three typewritten pages; it is adequate to use the program. All features are discussed and described in the documentation and additional technical information is presented for those who may wish to modify the program for tailored execution.

Skill level: The program can be used by novice users with relative ease. It is completely menu driven and error messages are explained in depth in the documentation.

Reviewer: Norman Garrett

Product Name: Advanced System Editor Equipment
Req'd:
Manufacturer:
Volition Systems
P.O. Box 1236

Del Mar, CA 92014
Author:
Richard Gleaves
Description: ASE is an extended Pascal SYSTEM.EDITOR running under the Apple UCSD Pascal system. While fully compatible with the standard editor, including using all of the standard features and commands, it includes many enhancements and additional features making it much more versatile and easy to use. Files are not limited to memory size and may be as large as an entire disk. A disk directory, including the first line of the file, is available from within the editor. Multi-file editing is possible, making it easy to move sections from one file to another. ASE also has user definable function keys

Pluses: The editor is much faster and has many more commands making text and program editing easier and more efficient. A backup of the original file is always saved in case of mistakes. It has a column command to move whole columns left or right. Installation is easy and the documentation is superb. If you write many Pascal programs, you need this editor.

Minuses: None noted.
Skill level required: Familiarity with UCSD Pascal.
Reviewer: Phil Daley

Product Name: Total Health
Equipment
Req'd: Commodore 64 and disk drive
Manufacturer: Computer Software Associates 65 Teed Drive Randolph, MA 02368
Author: Mark Baier

Description: A program for fitness and health enthusiasts which monitors and encourages good nutrition. The program has two parts: a file manager of daily food intake which keeps track of the calories, protein, fat and carbohydrates consumed on a daily basis; and a graphing program to plot your current status toward your final goal. The package includes a small manual that is not really needed due to the program's elegant simplicity.

Pluses: The program is easy to use and can be your own personal weight watcher. Like any dietary aid, it will encourage you to do well, but the hard part is to stick to your schedule. The list of foods could be larger, but there is a provision for adding your own values for unlisted foods.

Minuses: There aren't many input checks, so the program crashes relatively easily. I had several problems with the disk routines.

Skill level required: No prior knowledge necessary.
Reviewer: Phil Daley

Product Name: The Commodore 64 Music Master Equipment
Req'd:
Manufacturer:
Commodore 64 and cassette
Softtext, Inc. Cambridge, MA
Author
James Vogel
Description: A tape of over 50 BASIC music programs for the C-64 with accompanying book describing how the programs work, variable listings and logic flow, utilities for exploring the ADSR, filters and frequency conversions, and suggestions for making your own music programs. The programs themselves are generally interesting and range from simple to complex. The documentation procedes from a very beginning sound program, stepwise to more advanced topics.

Pluses: The programs are well documented and can easily be modified to help in understanding how they work. They include a wide range of topics and show how to use all of the features available in the SID chip. It is an excellent introduction to the sound capabilities of the C-64 in BASIC.

Minuses: None noted
Skill level required: A small amount of programming experience (1 or 2 weeks) to be able to modify the programs.

Reviewer: Phil Daley

For the
Commodore 64

low price $\$ 89$
 Telecomputing with a difference!

Superterm - the only software that communicates with them all! Information networks such as CompuServe; business and university mainframes; free hobby bulletin boards.

Professionals and students: SuperTerm's VT102 emulation gets you on-line in style. Advanced video features, graphics, full-screen editing, 80/132 column through sidescrolling, extended keyboard - perfect for EDT, DECMail, etc. Even download your work files and edit off-line! Full printer and editor support; other emulations available.

Researchers and writers: SuperTerm's built-in text editor helps you create, edit, print, save, send and receive text files - articles, stories, reports, inventories, bibliographies - in short, it's your information work station. Access CompuServe, Dow Jones Information Network, Dialog/Knowledge Index. Western Union's Easylink, The Source, and many more. Optional Sprinter accessory saves printing time and $\$$ (see below).
Computer hobbyists: Join in the fun of accessing hundreds of free bulletin board systems (BBS) for Commodore, Apple, TRS-80, etc. Text mode with all BBS systems; up/downloading with Commodore BBS systems (Punter protocoll. Special protocol for up/downloading with other SuperTerm owners. Popular "redial-if-busy" feature for use with automodems.

Get the information you need, for business or for fun, with the software that communicates with them all!

Requares Commodore 64, disk drive, and slitable in anual- or autc-modem Printer optional. Sofware on disk w/free backup copy. Extensive manual in deluxe birder

SuperTerm's
 SPRINTER Accessory

With the Sprinter accessory. SuperTerm can perform concurrent printing - as text appears on your screen, it's simultameously printed on your printer. includes all necessary hardware for connecting your parallel printer and computer via the cartridge port. Simply plug-in and go. Free utility software for printing and listing as a stand-alone interface.

Requires paralles printer such as Epson, Gemin, Microline, C Iton (Min speed 35 cps.)

Commodore 64 is a trademark ol Commodore Electronics, Lte. handling $\$ 3.50$ for C.O.D.) VISAMastercard accepted (card and exp. date). MO residents add 5.625% sales tax. Foreign orders payable US.S. US. Bank ONLY; add \$5 shphndlg.
311 WEST 72nd ST. • KANSAS CITY • MO • 64114

Product Name: Magic Memory
Equipment
Req'd: Apple II,II +, IIe - DOS 3.3
Manufacturer:
ARTSCI
5547 Satsuma Ave.
North Hollywood, CA 91601
Author:
Executive Software, Inc.
Description: An address-book oriented data-base system utilizing either 40,70 or 80 column screen display and allows up to 9 lines of information per entry. Entries are saved under a TAB name - there are 48,24 alphabetic and 24 user defined. Each set of TAB entries is saved in its own text file. TAB files may be sorted on any field, left or right hand sort, and the sorted file may replace the original.

Pluses: The documentation is very good and the program is very easy to use, especially for a novice. For names, addresses and similar short entry type of information, the program is very good. It has flexible printouts and entries can be easily replicated into other tab files for crossreference ability without retyping.

Minuses: The program has a limited scope of useage. The field format is preset and unchangeable. There is no scarching ability to find a particular record, other than flipping through records one at a time.

Skill level required: No previous knowledge necessary.
Reviewer: Phil Daley

COMPLETE DOCUMENTATION $\$ 19.95$
OS9 \& BASIC 09 ARE TRADEMARK OF MICROWARE. INC. \& MOTOROLA CORP.

(405) 233-5564

2110 W. WILLOW - ENID, OK 73701

Product Name: 64 Doctor
Equipment
Req'd:
Manufacturer:

Author:
Commodore 64 and disk drive
Computer Software Associates 44 Oak St.
Newton Upper Falls, MA 02164
Eric Berkowitz \& David Pollack
Description: A diagnostic aid to troubleshoot your C-64 including RAM, keyboard and audio, and associated peripherals - disk drive, printer, cassette, joystick, and video unit. They can be tested individually or in an autotest mode. Any problems encountered are printed on the screen.

Pluses: The disk and short instruction manual are a lesson in user friendliness. The program uses an interesting graphic presentation to simplify use. Problems are clearly spelled out with a suggestion to take the offending equipment to a repairman.

Minuses: If the C-64 is not working or the disk drive won't load a program, you'll never get this program in to determine what's wrong. Saving a copy on a cassette would probably be a good idea.

Skill level required: No prior knowledge necessary
Reviewer: Phil Daley

Product Name: The Computer Mechanic
 Equipment
 Req'd:
 Manufacturer:
 Commodore 64 and Disk Drive Softsync, Inc.
 14 East 34th St.
 New York, NY 10016

Description: This program is a computerized automotive instruction and diagnostic tool. It teaches an auto novice about possible causes of various problems and the recommended time intervals between certain checks and maintainence. Covered topics include oil change, brake job, transmission check, tune up and tire rotation. The program will also save a file on up to 100 different vehicles, to help keep track of the last performed maintainence dates.

Pluses: The program is extremely easy to use and requires almost no instruction manual. There are interesting graphics of the various parts of a car.

Minuses: If you know almost anything about cars, this program is too simple to be of any value. The save the date section of maintainence might be useful if the program looked to see when maintainence is due, but it doesn't. You have to look at the individual records and then write them down while you look at the maintainence interval section to see if any is due. No printer output.

Skill level required: None
Reviewer: Phil Daley

caused by the carriage return (\$8D). Somehow this gets repetitively tangled with the returns in the disassembly routine, with the result that the screen is scrolled with a complete set of blank lines and the trace program left in an infinite loop of scrolling commands! Removing the 8D uncovered a second problem. In COUT, Y is saved in YSAV1, \$35) and restored after the actual printing is performed. But each of the intermediate steps is processed by Step-Trace, using COUT to display these steps. The net result is that when the COUT routine in the user program is finished, it always restores Y to 0 and the second letter of text $(Y=1)$ is printed repetitively.

The third problem is that the letters that do get printed overwrite a character in the command display, so that they are not evident. I decided to modify Step-Trace to eliminate these problems.

The first two were cured by examining each command to see if it is "JSR COUT". When this is encountered, the COUT routine is called directly by my trace program so that it will not be traced stepwise. This also eliminated the problem with DOS; DOS no longer needs to be disconnected. The third problem is cured by establishing a split screen; whenever the substitute COUT is to be called, the window parameters being used by the trace program / window top, bottom, horizontal and vertical cursor positionsl are saved and replaced by a user set. After a text-character printout, this user set is saved and the trace program set replaced. With this modification, the TEXT is printed out properly in the two bottom screen lines and all program display is kept above it (with a blank gap between).

All these improvements lengthen the program so that it will no longer fit in the $\$ 300$ page. Since it should be useful for tracing a program located anywhere, it should be written in relocatable form so that it can be used by BRUN STEP/TRACE, AX where X is any convenient location that avoids the program to be examined. The internal jumps were converted to relative jumps using CLV followed by BVC and relay points insertcd when the jump distances were too large. The
only real problem was figuring out how to convert the routine for installing the jump commands that follow the copied user-program command at $\$ 3 \mathrm{C}$, since the commands to be transferred are themselves internal program jumps (to NBRN and BRAN, for returns from "no-branch" and 'branch" operations

I solved this problem by eliminating these jump instructions from the trace program and installing the NBRN and BRAN addresses directly into the jump commands at $\$ 3 F / 44$. This is done by using a location finding routine at BRAN and again at NBRN.

I first tried doing this with BRAN and NBRN at the beginning of the program so that the self-locating routine wouldn't have to be repeated with every user command, but could be used once as part of the initialization. Unfortunately, some of the monitor subroutines such as GETN in NXTI use some of the memory locations right after $\$ 3 \mathrm{C}$ and the initialization gets overwritten. My second try was to move the XQT area from $\$ 3 \mathrm{C}$ to $\$ \mathrm{E} 0$, since this would be interfered with only by HiRes graphics. This worked fine, but then I realized that the $\$ E 0$ area is sometimes used for program pointers in non-graphics programs, so that there could be interference. For this reason, I finally put NBRN and BRAN in the XQIN area, where the \$3C region is initialized before each program command.

The final decision to be made concerned the storage of window parameters. Again, zero page is out because of possible interference with user programs. There are nice unused areas available up in DOS, but again there can be interference; I have used many of these locations for data storage in long complex programs that exhaust zero page.

For a trace program at a fixed location the window parameters could be stored within the program, but I was soon convinced that relocatability would be too complicated. My final choice was to dedicate one screen line to this storage. Since I wanted a blank area to separate the trace window from the user window, I put the window parameter storage at the end of one of

\bigcirc	71øA	$\wedge \emptyset \emptyset 1$	CHECK	LDY \#1	; IS COMMAND COUT?	
	710C	B1 3A		LDA (PCL) , Y		these blank lines. (It shows as 8 inverse
	710 E	C9 ED		CMP \#\$ED		characters at the right.)
	7110	Dø 5A		BNE XJSR		The final program still suffers from
©	7112	C8		INY		a very slight defect: it will not tolerate
	7113	B1 3A		LDA (PCL), Y		PR\#l or a machine loading of CSWL to
	7115	C9 FD		CMP \#\$FD		activate the printer.
©	7119	A2 03		LDX \#3	; USER COMMAND IS COUT	To test this Step/Trace program,
	711B	B5 22	SVT	LDA W, X	; SAVE TRACE WINDOW	(1)RUN TEST, enter FF58S CR, then
	7110	9D 74 ø6		STA TW, X		S CR , or 21 HOME, enter the
-	$712 \emptyset$	CA		DEX		TEXT program below, BRUN
	7121	10 F8		BPL SVT		STEP/TRACE, A 12345, enter
	7123	A2 03		LDX \#3		$3 \emptyset \emptyset \mathrm{~S} C \mathrm{C}, \mathrm{SCR}, \ldots$. or $3 \emptyset \emptyset \mathrm{~T}$ CR
	7125	BD $7 \emptyset \square 6 \mathrm{I}$	LDU	LDA UW, X	; LOAD USER WINDOW	
-	7128	9522		STA W, X		10 REM TEST
	712A	CA		DEX		
	712B	10 F8		BPL LDU		
	712D	$2 \emptyset 22 \mathrm{FC}$		JSR VTAB	; POSITION CURSOR	$2 \emptyset$ PRINT CHRS\$(4)
©	7130	$2 \emptyset 3 \mathrm{FFF}$		JSR RSTR	; RESTORE USER REGISTERS	''BRUN STEP/TRACE'':
	7133	$2 \emptyset \mathrm{ED} \mathrm{FD}$		JSR COUT	; PRINT IN USER AREA	PRINT ''HELLO''
	7136	A2 $\square^{\text {d }}$		LDX \#3		
-	7138	B5 22	SVU	LDA W,X	; SAVE USER WINDOW	30 END
	713A	9D 70.66		STA UW,X		
	713 D	CA		DEX		TEXT
	713E	1d F8		BPL SVU		
(1)	7140	A2 03		LDX \#3		CALL - 151
	7142	BD 74061		LDA TW, X	; LOAD TRACE WINDOW	
	7145	9522		STA W,X		3øø: A2 18 Aø Ø3 2ø $\emptyset 7 \emptyset 386 \emptyset 6$
-	7147 7148	CA		DEX ${ }_{\text {BPL }}$ LDT		$84 \emptyset 7 \mathrm{~A} \emptyset \emptyset \emptyset \mathrm{~B} 196 \mathrm{~F} \emptyset 62 \emptyset \mathrm{ED} \mathrm{FD}$
	714A	B8		CLV		C810F6め日 8D D 4 C5 D8 D4 00
	714B	50 AF		BVC RN	; JUMP TO NBRN	
웅	714D	$2 \emptyset 82 \mathrm{F8}$ X	XBRK	JSR INSD		
	$715 \emptyset$	$2 \emptyset$ DA FA		JSR RGDS		$1-\infty-\infty$
	7153	$\begin{aligned} & \mathrm{B8} \\ & 50 \mathrm{~A} 8 \end{aligned}$		CLV BVC RS1	; JUMP TO STRT	
장	7156	50 A8	RA1	BVC RA2	; RELAY TO AGIN	
	7158	18	XRTI	CLC		H
	7159	68		PLA		
항	715A	8548		STA STAT		At last! . . . A dual 6522 versatile
	715 C	68	XRTS	PLA		interface adapter (VIA) board
	715D	853 A		STA PCL		
	715 F	68		PLA		The 6522 VIA, long the preferred input/output chip for 6502 mi-
©	$716 \emptyset$	85 3B	PCN2	STA PCH		crocomputers, is now available for the
	7162	A5 2F	PCN3	IDA LGTH		C-64. 6522 programming techniques,
	7164	$2 \emptyset 56 \mathrm{F9}$		JSR ADJ3		covered in many available books, can now be applied to the C - 64 for even the most
	7167	843 3		STY PCH		be applied to the $\mathrm{C}-64$ for even the most sophisticated real-time control applica-
상	7169	18		CLC		\| tions. Board allows full use of the IRQ
	716A	9014		BCC NEWP		interrupt. When combined with the
	716 C	18	XJSR	CLC		\| C-64's memory capacity, it provides an
(1)	716 D	$2054 \mathrm{F9}$		JSR ADJ2		extremely powerful yet cost-effective development system and controller in one
	7178	AA		TAX		package. Includes extensive application
	7171	98		TYA		notes and programming examples.
	7172	48		PHA		Up to four boards can be connected to- gether, providing sixteen 8 -bit ports.
©	7173	8A		TXA		- ${ }^{\text {gether, }{ }^{\text {a }} \text { providing sixteen } 8 \text {-bit ports. }}$ Order Model $64 \mathrm{IF} 22, \$ 169$ for one, post-
	7174	48		PHA		paid USA. Each additional \$149.
	7175			LDY \#2		Complete reconstructed Assembly Lan-
O	7177	18	XJMP	CLC		guage source code fort the C-64's BASIC and
	7178	B1 3A	XJAT	LDA (PCL) , Y		KERNAL ROMs, all 16 K! Extensively commented and cross.
	717A	AA		TAX		referenced. Far more than a mere "memory
	717B	88		DEY		map" of useful locations, this book really does
숭	717 C	B1 3A		IDA (PCL) , Y		tell all. An incredible time-saver in effective $\mathrm{C}-64$ programming and understanding. Order
	717E	863 B		STX PCH		C-64 Source $\$ 29.95$, postpaid USA.
	7180	853 A	NEWP	STA PCL		SCHNEDLER SYSTEMS
-	7182	Bø F3		BCS XJMP		1501 N . l vanhoe, Dept. M8
	7184	$2 \emptyset$ D7 FA		JSR REGD	; DISPLAY USER REGISTERS	Arlington, VA 22205 Tele phone ordersinformation: 703 (237-4796
	7187	B8		CLV		VISA MASTERCARD
	7188	50 CC		BVC RA1	; JUMP TO AGIN	L- - - - -

Constructing Truly 3-D Mazes

by Dr. Alan Stankiewicz

"
Get a rat's eye view of the maze corridors as you walk through them.

ロ

Just a few months ago, I remember reading an article in this journal concerning the construction of random mazes. The methods described were all quite interesting, however, they all had one thing in common - they were twodimensional. Today, I will demonstrate a method of generating truly 3 -dimensional random mazes on your computer with a minimum of effort and memory. To do this, I will be referring to a program called "'Space Maze", written on the unexpanded VIC-20, reprinted here with permission from Victory Software Corporation. To emphasize the fact that not much memory is needed, this particular program will not only generate and store the maze but will actually give you a 3 -dimensional rat's-eye view of the corridors as you walk through -all in $31 / 2 \mathrm{~K}$ of RAM!

To start, you must envision a solid cube which is made up of a large number of smaller cubes, each of which are numbered according to the scheme shown in figure 1 . Each of these smaller cubes will correspond to a byte in your computer's memory such that a maze 6 high, 8 wide and 13 deep will take up a block of memory 624 bytes long. This block may be stored anywhere in RAM but in this program, it begins at location 6751 and ends at 7375. The initial construction of this cube is done in line 9 by simply poking the number " 2 " into each of these bytes, indicating that they now represent a solid section of the maze.

The next major step in the creation of this maze is to wormhole our way through this cube from the front wall to the back wall in a random fashion, thus creating the main pathway. However, before this can be accomplished, we
must further organize the large cube so that as we are drilling our way through, we will have some way of recognizing when we reach an outside wall and when we reach the exit (back wall). To accomplish this, we poke 4's into the bytes which represent the back wall and 3 's into the bytes representing the left side, front and top walls (lines 9 and 30 . Note that this procedure is not necessary for the right side or bottom wall |the reason will become apparent later).

Now that the limits of the cube are clearly marked, the drilling process may begin. The starting location for the main path in this program is selected to
be 6808 which is the byte (or small block) located one layer down from the top, one layer in from the front and one layer over from the left this would be block number 58 in figure 1). The number " 1 " will be poked in this location to show that it is now a "drilled out" byte and the variable "L" is set equal to 6808 four present location). From here, we choose a random direction to start moving, but before drilling in that direction, we must peek the location directly in front of our drill to make sure it is not an outside wall (designated by a 3). If it is, another direction will have to be chosen. If it is an inside solid portion

Figure 1

(designated by a 2) then we will procede to drill out two bytes in that direction by poking 1 's there and reassigning "L" equal to the location of the most freshly drilled out byte. The reason for moving two bytes at a time is so there will always be a wall between every corridor. After each drilling, the decision is made whether or not to change directions. For a more complex maze, of course, you would want to change directions more frequently. When you finally peek a " 4 ", you
know that you hit the back wall and your main path is complete, front to back. There is one difficulty which exists with this method, however, and that is the possibility of drilling yourself into an area which is totally surrounded by 3's and/or l's with no possibility of finding a " 2 " (an undrilled inside byte) no matter which direction you look. This situation is easily resolved, however, by allowing yourself to backtrack over the main path every so often and as you do this,

Figure 2

Figure 3

to fill up these "dead ends" with 3 's (line 58) so you will never go there again. Backtracking can be kept to a minimum by only allowing it to occur, for example, after every 20 th direction change.

In addition to controlling the frequency of direction changes, the difficulty level of the maze can also be regulated by setting a minimum length for the main path, that is, if in the drilling process you peek a " 4 ", check the length of the main path (line 55). If it is not yet long enough, then change directions and continue to drill. The length of the main path is continuously monitored in "Space Maze" by adding 2 to the variable " U "' every time you drill (line 54). Also don't forget to subtract from U when backtracking.

We now have a cube with a wormhole bored through it from front to back. The next major step, of course, is to create side paths to confuse the mouse. This task is accomplished in exactly the same manner as the main path, only we now start at randomly selected bytes on the main path and continue for variable distances outward. If memory permits, you may even want to differentiate the side paths by poking a " 5 " into these bytes, thereby creating a method of distinguishing the main path from the side paths during the display of the maze.

This brings us to the final problem of how to display our truly 3-D maze on a 2-D television screen. One technique is to display successive layers of the maze, as if you were able to slice it up with a knife and show one slice at a time (figure 2). Another more dramatic representation is to let the user "walk" through the maze, giving him a 3-dimensional view of the passageways as shown in figures $3,4 \& 5$. At first glance, the production of this type of display would seem quite complicated, but in principle, all that is required is to draw a big " X " on the TV screen to represent a long hallway and then fill in the doorways as you scan that particular area of the maze. The detailed mechanics of this process are beyond the scope of this article, however, a BASIC program written fairly efficiently can usually draw up such a picture in 2-3 seconds.

I hope this short discussion has succeeded in arousing some interest in maze-building and I would be very interested to hear from anyone who has been able to generate and/or display a 4-dimensional maze!

Listing 1

```
    \emptyset POKE 36879,14:POKE 45,47:POKE 46,22:POKE 55,196:POKE 56,22:CLR:
        PRINT"{PURPLE}STOP TAPE":GOTO 8
    1 I=-N* (M=1)-N*8* (M=2)-N*Y* (M=3):0=I+I:RETURN
    2N=-1-(RND (8)> .5)*2:M=INT(RND (8)*3+1):RETURN
    3 GOTO 3ø\emptyset
    4G=255:POKE 84\emptyset,F AND G:POKE 842,R AND G:POKE 843,D AND G:
        POKE 841,-D AND G:POKE 844,-R AND G
    5 POKE 1,L/256:POKE \emptyset,L-PEEK(1)*256:PRINT"{CLEAR}":
        POKE 7713,PEEK(C+6634):POKE 36876,248:SYS 7448
    6 POKE 36878,.:POKE L,Z:GOTO 97
    8 WAIT 37151,64:A=7375:Y=48:B=6751:INPUT "LEVEL(\emptyset-9)";V:V=.\emptyset13*V+.3:
        J=RND(-TI):PRINT "WORKING;
    9 TI$="\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset":L=68\emptyset8:FOR J=B TO A:POKE J,2:NEXT:FOR J=7327 TO A:
        POKE J,4:NEXT:FOR J=B TO 6799:POKE J,3:NEXT
3\emptyset FOR J=\emptyset TO 12:FOR K=B+J*Y TO B+8+J*Y:POKE K,3:NEXT:
        FOR K=B+J*Y TO 6791+J*Y STEP 8:POKE K,3:NEXT:NEXT:POKE L,1
    41 GOSUB 2
    42 X=X+1:GOSUB 1:IF RND(8)<V THEN 41
    54 G=PEEK(L+I):IF PEEK(L+0)=2 AND G-3 THEN POKE L+I,1:L=L+0:POKE L,1:
        U=U+2:GOTO 42
    55 IF G=4 THEN IF U> (V-.3)*288 THEN POKE L+I,5:
        PRINT U"STEPS TO EXIT":GOTO 66
    58 IF G=1 AND INT(X/9)=X/9 THEN POKE L,2:POKE L+I,3:L=L+0:U=U-2:
        IF TI§B THEN U=\emptyset:GOTO }
    60 GOTO 41
    66 FOR J=1 TO (V-.3)*677
    68 L=B-1+INT(RND (8)*4+1)*2+INT(RND (8)*3+1)*16+INT(RND (8)*6+1)*96-56
    7\emptyset IF PEEK(L)-1 THEN 68
    72 FOR K=1 TO 6:GOSUB 1:IF RND(8)<. }3\mathrm{ THEN 82
    76 G=PEEK(L+I):
        IF PEEK(L+0)=2 THEN IF G-3 THEN IF G-5 THEN POKE L+I,1:L=L+0:
        POKE L,1:NEXT: GOTO }8
    82 GOSUB 2:NEXT
    86 NEXT:FOR J=B TO A:IF PEEK(J)>2 AND PEEK(J)<5 THEN POKE J,2
    95 NEXT:F=1:R=-8:D=-Y:M=37151:N=M+1:X=M+3:E=1:0=197:B=B+8:L=68\emptyset8:
        PRINT"{CLEAR}":POKE 36869,255:GOTO 3
    97 WAIT 0,64:G=PEEK(M):IF G-94 AND G-126 THEN }9
    98 POKE X,127:IF PEEK(N)-247 THEN }9
115 POKE X,127:IF PEEK(N)=119 THEN 2\emptyset\emptyset
12\emptyset POKE X,255:G=PEEK(M):IF G=122 THEN J=PEEK(L+F):
        IF J-2 AND J-5 THEN L=L+F:GOTO 3
125 IF G=118 THEN J=PEEK(L-F):IF J-2 AND J-5 THEN L=L-F:GOTO 3
13\emptyset J=R:IF G=11\emptyset THEN R=F:F=-J:GOTO 3
135 IF G=78 THEN R=-D:D=J:GOTO 3
140 J=F:IF G=86 THEN F=-D:D=J:GOTO 3
145 IF G=9\emptyset THEN F=D:D=-J:GOTO 3
15\emptyset G=PEEK(0):IF G=52 AND B>6766 THEN B=B-8:GOTO 3
155 IF G=12 AND B<6784 THEN B=B+8:GOTO 3
16\emptyset IF G=8 THEN E=-E:PRINT"{CLEAR}":GOTO 3
190 GOTO }11
2\emptyset\emptyset POKE X,255:IF PEEK(M)=94 THEN J=D:D=-R:R=J:GOTO 3
21\emptyset J=R:R=-F:F=J
300J=ABS(F):K=ABS(D):
    C=((1-(J> 1)-(J> 8))*SGN(F)+3)*7+(1-(K§1)-(K> 8))*SGN (-D)+3
31\emptyset POKE 834,PEEK(6634+C):Z=PEEK(L):POKE L,9:IF E-1 THEN }
32\emptysetJ=INT(B/256):POKE 1,B-J*256:POKE 2,J:SYS 7376:GOTO 6
```

Editor's Note: As a service to MICRO readers, the creators of this program will make it available on cassette.
Send $\$ 3.00$ to:
Victory Software Corporation
1410 Russell Road
Paoli, PA 19301
MORO

FLOPPY DISKS SALE *\$1.19 ea. Economy Model or Cadillac Quality

 LORAN*ECONOMY DISKS
Good quality $5 \frac{1}{4}$ " single sided single density with hub rings.
Bulk Pac 100 Qty. $\$ 1.19$ ea.
10 Qty.
1.39 ea
Total Price
$\$ 119.00$
Total Price
13.90

CADILLAC QUALITY (double density)

- Each disk certified - Free replacement lifetime warranty - Automatic dust remover

For those who want cadillac quality we have the Loran Floppy Disk. Used by professionals because they can rely on Loran Disks to store important data and programs without fear of loss! Each Loran disk is 100% certified (an exclusive process) plus each disk carries an exclusive FREE REPLACEMENT LIFETIME WARRANTY. With Loran disks you can have the peace of mind without the frustration of program loss after hours spent in program development

100\% CERTIFICATION TEST

Some floppy disk manufacturers only sample test on a batch basis the disks they sell, and then claim they are certified. Each Loran disk is individually checked so you will never experience data or program loss during your lifetime!

FREE REPLACEMENT LIFETIME WARRANTY

We are so sure of Loran Disks that we give you a free replacement warranty against failure to perform due to faulty materials or workmanship for as long as you own your Loran disk.

AUTOMATIC DUST REMOVER

Just like a record :heedie, disk drive heads must travel hundreds of miles over disk surfaces. Unlike other floppy disks the Loran smooth surface finish saves disk drive head wear during the life of the disk. (A rough surface will grind your disk drive head like sandpaper). The lint free automatic CLEANING LINER makes sure the disk-killers (dust \& dirt) are being constantly cleaned while the disk is being operated. PLUS the Loran Disk has the highest probability rate of any other disk in the industry for storing and retaining data without loss for the life of the disk.

Loran is definitely the Cadillac disk in the world

Just to prove it even further, we are offering these super LOW INTRODUCTORY PRICES
List $\$ 4.99$ ea. INTRODUCTORY SALE PRICE $\$ 2.99$ ea. (Box of 10 only) Total price $\$ 29.90$ $\$ 3.33$ ea. (3 quantity) Total price $\$ 9.99$
All LORAN disks come with hub rings and sleeves in an attractive package

DISK DRIVE CLEANER ${ }^{\text {s19.95 }}$

Everyone needs a disk drive doctor

FACTS

- 60% of all drive downtime is directly related to poorly maintained drives
- Drives should be cleaned each week regardless of use.
- Drives are sensitive to smoke, dust and all micro particles
- Systematic operator performed maintenance is the best way of ensuring error free use of your computer system.
The Cheetah disk drive cleaner can be used with single or double sided $51 /{ }^{\prime \prime}$ disk drives. The Cheetah is an easy to use fast method of maintaining efficient floppy diskette drive operation.
The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination. List \$29.95 / Sale \$19.95 * Coupon \$16.95

[^0]
COMPUTER SYSTEM SALE! HOME • BUSINESS • WORD PROCESSING

look at all you get for onlı $\$ 895$.

- B128 COMMODORE 128 K 80 COLUMN COMPUTER
- 8050 DUAL DISK DRIVE (over 1 milion bytes)
* 4023 - 100 CPS - 80 COLUMN BIDIRECTIONAL PRINTER
* $12^{\prime \prime}$ HI RESOLUTION 80 COLUMN GREEN OR AMBER MONIO
- bOX OF 10 LORAN LIFETIME GUARANTEED DISKS $\$ 99500$
1795.00

49900
4995

- 1100 Sheets fanfold paper
- all cables needed for interfacing

1995
102.05

total list price
\$ 3717.95
Printer replacement options (replace the 4023 with the following at these sale prices)

	LIST	SALE
* Olympia Executive Letter Quality Serial Printer	$\$ 699.00$	$\$ 399.00$
* Comstar Hı.Speed $160 \mathrm{CPS} 15 \%$ "	Serial-Business Prınter	$\$ 779.00$
* Telecommunications Deluxe Modem Package	$\$ 499.00$	

Plus You Can Order These Business Programs At Sale Prices

	LIST	SALE		LIST	SALE
Professional 80 Column	8149.95	\$99.00	Payroll	\$14995	\$99.00
Word Processor			Inventory	14995	99.00
Prctessional Data Base	14995	99.00	General Ledger	14995	99.00
Accounts Recerabie	14995	99.00	Financial Spread Sheet	14995	99.00
Accounts Payable	14995	99.00	Program Gellerator	14995	9900

15 DAY FREE TRIAL We give you 15 days to try out this SUPER SYSTEM PACKAGE! If it doesn't meet your expec tations, just send it back to us prepaid and we will refund your purchase price"? 90 DAY IMMEOIATE REPLACEMENT WARRANTYIf any of the SUPER SYSTEM PACKAGE equipment or programs fal! due to faulty workmanship or material we will replace it IMMEDIATELY at no charge!!

[^1]
80 COLUMN PRINTER SALE-\$149.00*

-15 Day Free Trial-180 Day Immediate Replacement Warranty

- Lowest Priced, Best Quality, Tractor-Friction Printers in the U.S.A.
- Fast 80-120-160 Characters Per Second - 40, 46, 66, 80, 96, 132 Characters Per Line Spacing - Word Processing - Print Labels, Letters, Graphs and Tables - List Your Programs
- Print Out Data from Modem Services - "The Most Important Accessory for Your Computer"

*STX-80 COLUMN
 PRINTER-\$149.00

Prints full 80 columns. Super silent operation, 60 CPS , prints Hi-resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal paper! Best thermal printer in the U.S.A.! (Centronics Paralle! Interface).

**DELUXE COMSTAR T/F 80 CPS PRINTER-\$179.00

The COMSTAR T/F (Tractor Friction) PRINTER is exceptionally versatile. It prints $81_{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ standard size single sheet stationary or continuous feed computer paper. Bi-directional, impact dot matrix, 80 CPS, 224 characters. (Centronics Parallel Interface).

Premium Quality-120 CPS
 COMSTAR T/F SUPER-10X
 PRINTER—\$289.00

COMSTAR T/F (Tractor Friction) SUPER10X PRINTER gives you all the features of the COMSTAR T/F PRINTER plus a $10^{\prime \prime}$ carriage, $120 \mathrm{CPS}, 9 \times 9$ dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underlining, back spacing, left and right margin settings, true lower decenders with super and subscripts, prints standard, italic, block graphics
and special characters, plus 2 K of user definable characters! The COMSTAR T/F SUPER-10X PRINTER was Rated No. 1 by "Popular Science Magazine." It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX 80).

Premium Quality-120 CPS

COMSTAR T/F SUPER-151/2" PRINTER-\$379.00
COMSTAR T/F SUPER $15 \%{ }^{\prime \prime}$ PRINTER has all the features of the COMSTAR T/F SUPER-10X PRINTER plus a $151 / h^{\prime \prime}$ carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX 100).

Superior Quallty

SUPER HIGH SPEED-160 CPS

COMSTAR TIF 10"

PRINTER-\$399.00
SUPER HIGH SPEED COMSTAR T/F (Tractor Friction) PRINTER has all the features of the COMSTAR SUPER-10X PRINTER plus SUPER HIGH SPEED PRINTING-160 CPS, 100\% duty cycle, 8 K buffer, diverse character fonts, special symbols and true decenders, vertical and horizontal tabs. RED HOT BUSINESS PRINTER at an unbelievable low price!! (Serial or Centronics Parallel Interface)

Superior Quality

 SUPER HIGH SPEED-160 CPS COMSTAR T/F 15 $1 / 2$ " PRINTER-\$529.00SUPER HIGH SPEED COMSTAR T/F $151 /{ }^{\prime \prime}$ PRINTER has all the features of the SUPER HIGH SPEED COMSTAR T/F 10' PRINTER plus a $151^{\prime \prime}$ carriage and more powerful electronics to handle larger ledger business forms! Exclusive bottom paper feed!!

PARALLEL INTERFACES

For VIC-20 and COM-64-\$69.00
For Apple Computers - $\$ 79.00$
NOTE: Other printer interfaces are available at computer stores!

Double Immediate Replacement Warranty

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within " 180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge, prepaid. This warranty, once again, proves that WE LOVE OUR CUSTOMERS!

PROTECTO
ENTERPRIZES we ove ana cussoues
BOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382.5244 10 order

World's Finest Computer Printer

List Price $\$ 699$
SALE \$399

- Daisywheel printer, bidirectional with special print enhancements.
- Print speed up to 20 characters per second.
- 10, 12, and 15 characters per inch.
- 256 character print buffer.
- 14.4 " forms width.
- Print line width: 115,138 , and 172 characters.
- Serial RS-232-C and parallel Centronics interface ports built-in
- Built-in bidirectional forms tractor.
- Operating status control panel.

World's Finest

"Combination"

List Price $\$ 799$

Printer/Typewriter SALE \$489

- Superb computer printer combined with worid's finest electronic typewriter!
- Better than IBM selectric - used by world's largest corporations!
- Two machines in one - just a flick of the switch!
- Superb letter quality correspondence - home, office, word processing!
- Extra large carriage - allows 14-1/8" paper usage!
- Drop in cassette ribbon - express lift off correction or eraser up to 46 characters!
- Precision daisy wheel printing - many type styles!
- Pitch selector - $10,12,15$ CPS, Automatic relocate key!
- Automatic margin control and setting! Key in buffer!
- Electronic reliability, built in diagnostic test!
- Centronics parallel interface built-in

15 Day Free Trial - 90 Day Immediate Replacement Warranty

Add $\$ 17.50$ for shipping, handling and insurance. Illinois residents please
add 6% tax. Add $\$ 35.00$ for CANADA, PUERTO RICO. HAWAll. ALASKA,
APA.FPO orders. Canadian orders must be in U.S. dollars.
WE DO NOT EXPORT TO OTHER COUNTRIES.
Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days
delivery, 2 to 7 days for phone orders, 1 day express mail!
VISA - MASTERCARD - C.O.D.
No C.O.D. to Canada, APO.FPO

Commodore - 64

SCRIPT-64 EXECUTIVE WORD PROCESSOR

(80 Columns in Color)

40 or 80 columns in color or black and white; turns your computer into a Business Machine!
Rated best by COMMODORE. This is the finest word processor available. Features include line and paragraph insertion/deletion, indentation, right and left justification, titles, page numbering, characters per inch, etc. All features are easy to use and understand. With tabs, etc. SCRIPT-64 even includes a 250 word dictionary/spelling checker to make sure your spelling is correct. The dictionary is user customizable to any technical words you may use. Furthermore, all paragraphs can be printed in writing and everyday letters are a snap. To top things off, there is a 100 page manual and help screens to make learning how to use SCRIPT-64 a snap. This word processor is so complete we can't think of anything it doesn't have. When combined with the complete database you have a powerful mailmerge and label program that lets you customize any mailing list with personalized letters. List $\$ 99.95$. Sale $\$ 59.00$. *Coupon Price $\$ 49.00$. (Disk only.)

SCRIPT-64 20,000 WORD DICTIONARY

Allows you to check spelling on 20,000 most often mispelled words! List $\$ 29.95$. Sale \$19.95. *Coupon Price $\$ 12.50$ (Disk only.)

SCRIPT-64 COMPLETE DATABASE

(Plus Mail Merge and Labels)
This powerful DATABASE is user friendly and makes any information easy to store and retrieve. The user defines the fields and then can add, change, delete, and search for any category wanted! Must be used with the SCRIPT-64 EXECUTIVE WORD PROCESSOR. When combined with the Executive Word Processor you can search out any category (zip codes, even hair color, etc.) and print super personalized letters! 600 names can be sorted and formulated on each disk in any order or category! Will handle any size mailing list by changing or adding disks! List $\$ 69.00$. Sale $\$ 39.00$. *Coupon Price $\$ 29.00$.

- LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY - BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

WE SHIP C.O.D. HONOR VISA AND MASTER CHARGE ADD $\$ 3.00$ SHIPPING FOR C.O.D. ADD $\$ 2.00$ MORE SPECIAL SERVICES:
One Day - Express Mail add $\$ 10.00$

, SANYO MONITOR SALE!!

9" Data Monitor

- 80 Columns $\times 24$ lines
- Green text display
- Easy to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

- 15 Day Free Trial-90 Day Immediate Replacement Warranty

9" Screen - Green Text Display
12" Screen - Green Text Display (anti-reflective screen)
12" Screen - Amber Text Display (anti-reflective screen)
$\$ 99.00$
12" Screen-Super 1000 Line Amber Text Display
14" Screen - Color Monitor (High Resolution)

Display Monitors From Sanyo

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity 5×7 dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of AudiolVideo, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products,
 from cameras to stereos. That's an assurance not everybody can give you!

[^2][^3]PROTECTD

* Graphic Print for C-64 *

Part 2

by Michael J. Keryan

Create full-page graphic printouts interfacing with major commercial software.

Last month we saw how to add a fast machine language routine to dump a graphic screen to most popular nonCommodore printers. This month we add another machine language program and a BASIC program that can load graphic files from a number of popular graphic programs, display them, and dump them to a printer.

Last time, a general purpose graphic dump program was described |GDUMP|. This program will give HiRes or MULTIcolor graphic dumps in various dot patterns - the density of the dot pattern is proportional to the darkness of the actual colors used in the picture. Sixteen different patterns are used so that even two colors that look identical on a black and white monitor or TV can be distinguished on the printout. The printouts are about 7 x 9 inches and take from two to two and a half minutes, depending on your printer speed. Printers supported are NEC 8023, PROWRITER, C. ITOH 8510, EPSON MX-80, FX-80, GEMINI, and any other printer that emulates graphic modes of these printers.

Now we have a program that will print graphics. But what are we going to print? Well, it would be nice if we could use this program to print all our neat pictures, graphs, etc. that we developed with those graphic aid and drawing programs that we paid anywhere from $\$ 20$ to $\$ 75$ for. You remember, the ones that didn't come with a screen dump program or the ones that took three minutes to produce a picture small enough to stick in your wallet? To print these, we'll first have to transform their graphs to memory areas we can easily get to. We'll need a machine language program to do this because we'll want to move between 8 K and 10 K of memory. But first we need a BASIC program that makes things a lot simpler.

A small BASIC program [see Listing 1) ties everything together. The first thing this program does is load the machine language programs GDUMP (from last time) and GMOVE [Listing 2). These were combined into one program "GDUMP + MOVE". Then a jump is made to line 2000 which changes the screen colors and displays a menu. You are given the choice of dumping graphics made from SIMONS' BASIC, ULTRABASIC-64, DOODLE, KOALAPAINTER, or SLIDESHOW. A sixth option allows SLIDESHOW graphics to be inverted.

If the picture is stored on a disk (options 2-6], you are instructed to put in the disk containing the picture and type in the name of the file. For DOODLE files, include the DD as part of the file name as listed on the directory. For KOALA files, include the PIC part, such as "PIC H CASTLE", but don't worry about the initial reverse field character that shows up in the directory. All file names can be shortened, but don't use the * wildcard; for example "PIC H^{\prime} " will work fine.

The picture is loaded into the same memory areas that these other programs use. Our BASIC program then jumps to line 1050. The graphic screen is reconfigured by a SYS to GMOVE. The workings of GMOVE is described later. Printer specific controls are set up (lines 1050-1100), then the keyboard is polled. If you hit P, you will get a printout. Any other key will reset the screen and end the program with no printed output.

SIMONS' BASIC

SIMONS' BASIC is a new package of BASIC extensions, distributed by Commodore. It comes in a plug-in
cartridge form and reduces the size of BASIC workspace by 8 K bytes. With SIMONS' BASIC, you get 114 more BASIC commands in 12 general categories. This is a super package and is a steal at $\$ 20$. A drawback is that it uses the \$CXXX area of RAM, making most of your machine language programs incompatible. However, this package contains so much utility that you may not need other ML programs.

With SIMONS' BASIC, you can make pictures, graphs, etc. in HiRes or MULTIcolor modes. You are given quite a few graphic commands for drawing lines, circles, blocks, adding text, etc. It has a COPY command that will dump the graphic screen to a printer in Commodore 1525 format.

Although the copy command is handy, it has a few undesirable features. It is small $4 \times 23 / 4$ on my printer) and slow 13 minutes). SIMON'S BASIC allows color redefinition, but only 3 colors can be specified at any time. With COPY, colors 1 and 2 come out as half-tone (vertical lines), while color 3 comes out solid black. Your highly colored pictures may look great on the screen, but the printouts may lack a little contrast between colors.

SIMONS' BASIC places the 8 K bit map memory in hidden RAM, under the KERNAL at $\$ E 000-\$ F F F F$. The 1 K screen memory is placed at $\$ \mathrm{C} 000$ (normally found at $\$ 0400$). The routine GDSIMN (see Listing 2) switches out the ROM, allowing you to access the 8 K bit map data, transfers the memory to $\$ 2000-\$ 3 F F F$, and then switches the ROM back in. It also places $\$ \mathrm{CO}$ into the screen pointer. Since SIMONS' BASIC contains no command to dump a graphic screen to disk, you will have to print the screen while it is displayed. By running the program in Listing 1, you can create a 7 line BASIC program for SIMONS' BASIC. Append your graphic program to this one with the SIMONS' BASIC MERGE command. Then when you want the graphic screen dumped to the printer, just include the line GOTO 1. This short program uses only one variable, A. Make sure you don't use A in the body of your program

ULTRABASIC-64

ULTRABASIC-64 is a package of 50 extra BASIC commands, made by Abacus Software. The graphic
commands are quite similar to those of SIMONS' BASIC. A graphic screen dump using the HARD command is also similar: it is fairly slow, small, and does not give accurate color shading renditions. With ULTRABASIC-64 dumps, you get 3 different shade densities for colors defined as 1,2 , and 3. But the darkness is a function of the color number ($1,2,3$) which is not related to the actual darkness of that color.

With ULTRABASIC-64, you can save a graphic screen to disk with the DUMP command or by pressing function key F2. This file can later be read in, reconfigured, and printed with all the attributes of GDUMP. GDULTR in Listing 2 first switches out the ROMS, moves the 8 K bit map area of memory located at $\$ A 000-\$ B F F F$ to $\$ 2000-\$ 3 F F F$, then re-enables the ROMS. The program then relocates the 1 K screen memory starting at $\$ 8400$ to $\$ 0400$, and the 1 K color memory starting at $\$ 8800$ to $\$ \mathrm{D} 800$. The border color is moved from \$83E0 to \$D020, and the background color from \$83E1 to \$D021. The screen is then configured for bit-mapped graphics and \$83D6 is transferred to \$D016 to enable either HiRes or MULTI modes.
is on the DOODLE disk. The white clouds against the blue sky are printed as black clouds on a white sky.

DOODLE contains a routine to save a picture to disk. It creates a file with DD as the first two characters of the file name. With the programs provided in Listings 1 and 2, you can read in the file, reconfigure and display it, and print it with GDUMP. GDDOOD in Listing 2 moves the 8 K bit map area from $\$ 6000-\$ 7 \mathrm{FFF}$ to $\$ 2000-\$ 3 \mathrm{FFF}$, and the 1 K screen area from $\$ 5 \mathrm{C} 00-\$ 5 \mathrm{FFF}$ to $\$ 0400-\$ 07 \mathrm{FF}$. Then the bit-mapped graphic mode is enabled and the HiRes mode is enabled, displaying the picture.

KOALAPAINTER

KOALAPAINTER is a software package that you get on disk when you purchase a KOALA PAD for the Commodore 64. With this program (by Audio Light/Koala Technologiesl, it's comprehensive single-page menu, and the KOALA PAD, even a six year old can quickly learn to make quite attractive graphics. This program is super user-friendly while being quite powerful.

At this time, KOALA provides no routine to dump your pictures to a printer, but will probably provide one in the future (for a price). KOALA does provide a routine to save your pictures to a disk file. This file can be used with the programs here to get a printer dump. In Listing 2, GDKOAL moves the 8 K bit map area located at $\$ 6000-\$ 7 \mathrm{FFF}$ to our common area of $\$ 2000-\$ 3 \mathrm{FFF}$. The 1 K screen area starting at $\$ 7 \mathrm{~F} 40$ is moved to $\$ 0400$, and the 1 K color memory starting at $\$ 8328$ is moved to $\$ \mathrm{D} 800$. The background color is moved from $\$ 8710$ to \$D021. Then the bit mapped screen in turned on and the MULTIcolor mode is enabled, displaying the KOALAproduced picture.

SLIDESHOW

SLIDESHOW is a program that has appeared on several TPUG (Toronto Pet Users Group) disks. It uses a machine language program called HRSUPP to clear color memory and display a high resolution bit-mapped graphic picture loaded from disk into $\$ 2000-\$ 3 F F F$. Quite a few digitized pictures are available in this format,

DOODLE

DOODLE is a very extensive drawing program, by Omni Unlimited. Although somewhat difficult to learn due to the many options and menus, you can create quite outstanding drawings with a joystick. Because DOODLE uses the HiRes mode, you can get lines that are only one dot wide; most other color drawing packages allow only two-dot resolution due to the use of MULTI mode. In any 8×8 square of dots, you can display any two colors: one for the dots and another for the background. However, the colors in any other 8×8 square block can be completely different. Of course, DOODLE handles all this for you; you just draw the pictures.

DOODLE provides a printer setup program for non-Commodore printers and a graphic dump program which is better than most other graphic packages attempts. It allows two sizes and is fast. The printer dumps have one fault, however. All dots are printed as black and all background is printed as white - no matter what colors were used for the dots and background. Check out the Middle Earth demo that

C64-FORTH/79 New and Improved for the Commodore 64

C64-Forth/79 ${ }^{\text {tu }}$ for the Commodore 64-\$99.95

- New and improved FORTH-79 implementation with extensions.
- Extension package including lines, circles, scaling, windowing, mixed high res-character graphics and sprite graphics.
- Fully compatible floating point package including arithmetic, relational, logical and transcendental functions.
- String extensions including LEFT\$, RIGHT\$, and MID\$.
- Full feature screen editor and macro assembler.
- Compatible with VIC peripherals including disks, data set, modem, printer and cartridge.
- Expanded 167 page manual with examples and application screens.
- "SAVE TURNKEY" normally allows application program distribution without licensing or royalties.
(Commodore 64 is a trademark of Commodore)
TO ORDER
-Disk only.
-Check, money order, bank card, COD's add \$1.65
-Add $\$ 4.00$ postage and handling in USA and Canada -Mass. orders add 5% sales tax
-Foreign orders add 20% shipping and handling -Dealer inquiries welcome

PERFORMANCE MICRO PRODUCTS

770 Dedham Street Canton, MA 02021 (617) 828-1209
including a photo of Ronald Reagan. SLIDESHOW uses the HiRes mode using only two colors; some pictures are shown in light on dark, others as dark on a light background.

SLIDESHOW pictures can be viewed and printed with the programs provided here. GDSLID in Listing 2 first clears the screen memory 11 K block at $\$ 0400$ l by creating black dots on a white background. Then the bitmapped mode is enabled as is the HiRes mode, allowing the pictures to be displayed.

PRINTER SET-UP

Before running Listing 1 , first make sure the printer setup matches your printer and interface. Four constants are incorporated in the program (lines 2120-2250). PT is the printer type: 0 for C. Itoh 8510, Prowriter, and NEC 8023, and 1 for Epson MX80 with GRAFTRAX or FX80 or compatible printers like Gemini/Star. NP is the repeat counter and is automatically set up from PT. NT is the interface type: 0 for Tymac Connection and 1 for others.

SD is the secondary address required by your interface for transparent operation (use 6 for Connection, 5 for Cardcol. After these changes are made, save the program to disk.

To save you the effort of typing in these programs, they are being made available as a MicroDisk. The MicroDisk, number MD-4, contains all programs in this series. In the last installment, we will get into what you have been waiting for - a method to print your pictures in full color on your existing printer

55EB AD $16 \mathrm{D} \emptyset$	MCON	LDA \＄Dø16	；TURN ON
55EE 29 DF		AND \＃\＄DF	；MULTI－COLOR
55Fø Ø9 10		ORA \＃\＄10	；MODE
55F2 8D 16 D ¢		STA \＄D＠16	
55F5 60		RTS	
	；		
55F6 A9 60	GDKOAL	LDA \＃\＄60	；MOVE BIT－MAP
55F8 20 5C 55		JSR GD2	
55 FB A2 0 D		LDX \＃\＄øø	
55FD 8E 7255		STX TO＋1	
560® A 04		LDY \＃\＄04	
56028 C 7355		STY TO＋2	
5605 A9 40		LDA \＃\＄40	
5607 8D 6F 55		STA FROM＋1	
56øA A9 7F		LDA \＃\＄7F	
560C 8D 7055		STA FROM＋2	
560F 20 6E 55		JSR FROM	；MOVE SCREEN
5612 A2 ø $^{\text {d }}$		LDX \＃\＄ø 0	
5614 8E 7255		STX TO＋1	
5617 AD 14		LDY \＃\＄04	
5619 A9 D8		LDA \＃\＄D8	
5618 8D 7355		STA TO＋2	
561E A9 28		LDA \＃\＄28	
5620 8D 6F 55		STA FROM +1	
5623 A9 83		LDA \＃\＄83	
56258 D 7055		STA FROM＋2	
5628206 E 55		JSR FROM	；MOVE COLOR MEM
562B AD 10 87		LDA \＄8710	
562 E 8D 21 DQ		STA \＄D． 21	；BACKGROUND
$563120 \mathrm{C} \square^{55}$		JSR BITON	；BIT－MAP ON
563420 EB 55		JSR MCON	；MULTI－COLOR ON
563760		RTS	
	；		
5638 A0 04	GDSLID	LDY \＃\＄04	
563A 8C 4656		STY GSL＋2	
563D A2 øø		LDX \＃\＄0	
563F 8E 4556		STX GSL＋1	
5642 A9 10		LDA \＃\＄10	；SCREEN COLORS
5644 9D 04	GSL	STA \＄8400， X	；SET TO BLACK
5647 E8		INX	；AND WHITE
5648 DGFA		BNE GSL	
564A EE 4656		INC GSL＋2	
564D 88		DEY	
564 E D $\mathrm{F}^{\text {F }}$		BNE GSL	
5650 20 C0 55		JSR BITON	；BIT－MAP ON
565320 E2 55		JSR MCOFF	；MULTI COLOR OFF
5656 60		RTS	
5657		END	

Listing 2

$10 \emptyset$ REM BASIC PROGRAM TO SUPPORT GDIMP
1010 REM M．J．KERYAN 3－3Ø－84
1020：
1 1 30 IF $A=\emptyset$ THEN $A=1:$ LOAD＂GDIMP + MOVE＂$, 8,1$
1040 IF $A=1$ THEN $A=2$ ：GOTO $2 \emptyset \emptyset$
1050 POKE 2ø491，PT：POKE 2ø492，SD
1060 POKE 20493，NT：POKE 20487，NP
$107 \emptyset$ SYS GT
$1 \varnothing 8 \emptyset$ IF $T Y=2$ OR $T Y=4$ THEN $\operatorname{MD}=\operatorname{PEEK}(5327 \varnothing)$ ：
MD＝3－（（MD AND 16）／16）：POKE 2ø494，MD
$1 \varnothing 9 \emptyset$ IF TY＝3 OR TY＝5 THEN POKE 20494,3
110 IF TY＝6 THEN POKE 20494，\emptyset
1110 GETK\＄：IF K\＄＜＞＂THEN 1110
$112 \emptyset$ GETK $\%$ ：IF K $\$="$＂THEN $112 \emptyset$
1130 IF K $\$=$＂P＂THEN SYS 20489
1140 POKE 53265，（PEEK（53265）AND223）
115 POKE 5327め，（PEEK（5327日）AND2Ø7）
1160 POKE 53272，21
1170 POKE 5328ø，6：POKE 53281，15：POKE 646，\emptyset
1180 PRINT＂\｛CLEAR $\}$＂：END
2øØ POKE 5328＠，6：POKE 53281，15：POKE 646，
$2 \emptyset 1 \emptyset$ PRINT＂\｛CLEAR，DOWN2\}WHICH TYPE OF PICTURE?"
$2 \emptyset 2 \emptyset$ PRINT
2030 PRINT＂ 1 SIMON＇S BASIC＂
2040 PRINT＂ 2 ULTRABASIC－64＂
205 PRINT＂ 3 DOODLE＂
2060 PRINT＂ 4 KOALAPAINTER＂
2070 PRINT＂ 5 SLIDESHOW＂
$2 \emptyset 8 \emptyset$ PRINT＂ 6 SLIDESHOW－INVERTED＂
$2 \emptyset 90$ INPUT＂＂；TY
$21 \emptyset$ IF TY＜ 1 OR TY＞ 6 THEN $2 \emptyset \emptyset$
2110：
212 \varnothing PT $=\emptyset:$ REM PRINTER TYPE
2130：REM NEC／PROWRITER＝\varnothing
2140：REM EPSON OR SIMILAR $=1$
2150：
$2160 \mathrm{NP}=3: \quad$ IF PT $=1$ THEN NP $=2$
217ø ：REM REPEAT CODE
2180 ：
$219 \emptyset$ NT $=\varnothing: \quad$ REM INTERFACE TYPE
22の ：\quad REM CONNECTION $=\emptyset$
2210：REM OTHERS $=1$
2220：
2230 SD $=6$ ：REM SECONDARY ADDRESS
2240 ：REM FOR TRANSPARENT
2250 ：
$226 \emptyset \mathrm{GT}=218 \emptyset 8+(\mathrm{TY}-1) * 3$
2270 IF GT＞ $2182 \emptyset$ THFN GT＝2182ø
2280 IF TY＝1 THEN 3
2290 PRINT＂\｛DOWN2\}
NOW PUT IN DISK WITH THE PICTURE FILE．＂
230 INPUT＂\｛DOWN\}NAME OF PICTURE"; NM
2310 PRINT＂\｛DOWN\}AFTER PICTURE LOADS, PRESS: "
2320 PRINT＂P TO PRINT IT＂
2330 PRINT＂E TO EXIT＂
2340 IF TY＝4 THEN LOAD＂？＂＋NM $\$+$＂＊＂，8，1
2350 IF TY＜＞4 THEN LOAD NM $\$+$＂＊＂， 8,1
2900：
30 REM CREATE A SIMON＇S BASIC PROGRAM 3010 Q $\$=\mathrm{CHR} \$$（34）
$3 \emptyset 2 \emptyset$ PRINT＂\｛CLEAR $\} 1$ IF $A=1$ THEN $A=2$ ：
LOAD＂Q\＄＂GDUMP＋MOVE＂Q\＄＂，8，1＂
$303 \emptyset$ PRINT＂ 2 IF $A=\emptyset$ THEN $A=1$ ：GOTO 7
3040 PRINT＂3 POKE 20491，＂PT＂：POKE 20492，＂SD
3050 PRINT＂4 POKE 2ø493，＂NT＂：POKE 2ø487，＂NP＂：
SYS 218ø8＂
$306 \emptyset$ PRINT＂ $5 \mathrm{~A}=\operatorname{PEEK}(5327 \emptyset): \mathrm{A}=(\mathrm{A}$ AND 16）／16＂
$307 \emptyset$ PRINT＂ 6 A $=3-A$ ：POKE 20494，A：SYS 20480：END＂
$308 \emptyset$ PRINT＂7 REM APPEND YOUR PROGRAM HERE＂
3090 PRINT＂SAVE＂Q\＄＂SIMON．GDUMP＂Q\＄＂，8＂
31øø POKE 631，19：FOR A＝632 TO 639：POKE A，13：NEXT A
3110 POKE 198，9：NEW
＊NOTE：Program GDUMP from last month（MICRO 73：22）should be combined with above program GMOVE into a new program GDUMP＋GMOVE

Alter Track \& Sector On

 Vic-20 \& C-64by Edwin L. King

Rewrite any sector on a disk without any loss of data.

Requirements: VIC-20, C64 or any model PET with disk drive.

The ability to examine and modify information on the disk is rather like the plumber's flaring tool. One does not need it often, but there is no such thing as a substitute. As a high school student, I was allotted one disk. After about six months of work, including developing a very fine adventure game that was 39 blocks long, the disk header got 'confused'. These was no way to use the disk without the header. The demo program DISPLAY T\&S showed that at least some of the data was still good. Two things happened: first, I NEWed the disk, lost the data, and was never able to successfully recreate it; second, I developed this utility.

The program is an odd sort of hybrid. It was written and debugged on a PET 4032, revised on a VIC-20 so that it definitely works on the 4040/2031/1540 disk systems and should work on the 8050 as well, and finally was tested on the C64. It is straightforward and requires little, if any, external explanation. The BLOCK-READ/WRITE commands are used quite frequently. After all of the preliminary data is INPUTed from the user, the requested sector is displayed in a hex memory dump of the format:

Listing 1

1 REM \#
2 REM \#\# ALTER T\&S FOR $4 \varnothing 4 \varnothing$ DISK AND \#\#
3 REM \#\# PET $4 \emptyset 32$ BY THE FUZZ \#\#
4 REM \#
5 REM
6 REM $\quad+++$ SET CONSTANTS ++++
7 REM
$1 \emptyset \mathrm{~T}=\emptyset:$ REM CURRENT TRACK
11 S= $\emptyset:$ REM CURRENT SECTOR
12 D= $\emptyset:$ REM DRIVE
15 HX $\$=" \emptyset 123456789$ ABCDEF": REM HEXCON
16 REM +++ALL OTHERS ARE TEMPORARY+++
17 DIM P\$(42), R\$(255)
18 OPEN 15,8,15:OPEN 2,8,2, "\#り":GOSUB 1øøø
$2 \emptyset$ REM
21 REM ++++INPUT FROM USER++++
22 REM
25 PRINT"\{CLEAR,RVS\} ALTER T\&S BY FUZZ "
26 PRINT:PRINT:PRINT
27 INPUT"DRIVE";D
28 INPUT"\{DOWN3\}TRACK,SECTOR";T,S
29 IF T=ø OR T> 35 THEN PRINT\#15, "Iø":CLOSE 15:
CLOSE 2:PRINT"\{CLEAR,RVSOFF,RVS\}END":END
30 GOSUB 5øø: REM READ T\&S INTO R\$(I)
$4 \emptyset$ GOSUB 6øø: REM FOR P\$'S
45 PRINT"\{CLEAR\}TRACK: "T" SECTOR: "S:
PRINT:PRINT:PRINT
46 PRINT"OUTPUT TO \{RVS\}S\{RVSOFF\} CREEN OR \{RVS\}P\{RVSOFF\}RINTER"
47 GET QW\$:IF QW\$ < > "S" AND QW\$ < > "P" THEN 47
48 IF QW\$="P" THEN OPEN 3,4:DQ=4:GOTO 5ø
49 OPEN 3,3:DQ=3
$5 \emptyset$ FOR I=1 TO K-1:PRINT\#3,P\$(I)
51 IF I<> INT(K/2) OR DQ $=4$ THEN 55
52 PRINT"\{DOWN2\}PRESS ANY KEY TO CONTINUE"
53 GET QW\$:IF QW\$="" THEN 53
55 NEXT I
$\emptyset \emptyset: \emptyset 1233 \mathrm{~F} 4 \mathrm{BCC} \emptyset 2 \emptyset \mathrm{AAB}$ ø8: $2 \emptyset 304050607 \emptyset 809 \varnothing$

F8: $\emptyset 1 \emptyset 2 \emptyset 3 \emptyset 4 \emptyset 5 \emptyset 67 \emptyset 8 \emptyset$

The index-looking things are just that: "line numbers" your way of indicating which line(s) you wish to change in that sector. Naturally, the program can change any block on the disk, fix spelling in files or the directory, all under your watchful eye and direct control.

Disk Headers

Creation of a new disk header requires knowledge of how data is stored on the disk. I would suggest a quick review of the section on advanced disk programming in your manual before making any modifications to the disk The first thing that must be done is to make sure the disk has some of its house keeping in order. To do this, follow the program prompts to modify these lines to read as follows:

$A D: \$ \$ \$ \$ \$ 103241 \$$

Do not type in the dollar signs! They are there to remind you that there will be data in those locations that should not be disturbed.

Next you must give the disk an ID number. Select a two digit number. Convert it into its hex ASCII value by placing the digit ' 3 ' in front of each of the digits. Enter these two values in the third and fourth positions on line aø: at locations A2 and A3. For example, if the ID number choosen was 19 , then the two hex ASCII digits would be ' 31 ' and '39', and the line would look like:

Ag: $\$ \$ \$ 3139 \mathrm{~A} 9241$ \$\$

$$
19
$$

The disk must have a name. This is accomplished by converting each of the letters in the selected disk name into their hex ASCII values and entering them into locations $9 \emptyset$ through A1. If the name is less than eighteen (18) characters long, then pad the remaining locations with the shifted space character, hex $A \emptyset$. For example, if the disk were to be named GAMES, then the lines modified so far would look like:

56 IF DQ $=4$ THEN PRINT\#3:CLOSE 3
$6 \emptyset$ PRINT"ARE THERE ANY MODIFICATIONS":INPUT M\$
$61 \operatorname{IF} \operatorname{LEFT} \$(M \$, 1)=" \mathrm{~N} "$ THEN $9 \varnothing$
$7 \emptyset$ PRINT:PRINT"WHICH LINE";:INPUT L\$
72 FOR $I=1$ TO K:IF LEFT\$(P\$(I),2)=I\$ THEN Q=I:I=1 $\varnothing \emptyset \emptyset$
73 NEXT
74 IF I<K+1 THEN 6ø
$8 \emptyset$ PRINT"\{RIGHT\}"RIGHT\$(P\$(Q),LEN(P\$(Q))-3);: PRINT "\{LEFT26\}";
81 INPUT Q\$:P\$(Q)=LEFT\$(P\$(Q),3)+" "+Q\$
82 GOTO $6 \emptyset$
90 GOSUB 2 $2 \emptyset:$ REM BREAK P\$'S
95 GOSUB 1 $\emptyset:$ REM UPDATE T\&S
97 PRINT"\{CLEAR\}":GOTO 28
1øø REM +++++++++WRITE TO DISK++++++++++
11ø PRINT\#15, "B-P"2;1
13Ø PRINT"\{CLEAR\}":FOR I=1 TO 255:PRINT\#2,R\$(I);: PRINT"\{HOME\}BYTE"I" OF 255":NEXT
140 PRINT\#15, "U2: "2;D;T;S:RETURN
$2 \emptyset$ REM ++++++ UPDATE R $\$(\mathrm{I})+++++$
$21 \emptyset$ FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{K}-1: \mathrm{P} \$(\mathrm{I})=\mathrm{RIGHT} \$(\mathrm{P} \$(\mathrm{I}), \operatorname{LEN}(\mathrm{P} \$(\mathrm{I}))-4)$: NEXT: M= \emptyset
211 PRINT"\{CLEAR\}PLEASE HOLD WHILE I UPDATE THE DISK"
220 FOR $I=1$ TO K-1
230 PRINT"\{CLEAR\}":FOR J=1 TO LEN(P\$(I))STEP3
$24 \varnothing X \$=\operatorname{MID} \$(P \$(I), J, 2): G O S U B 71 \varnothing$
$25 \emptyset \mathrm{R} \$(\mathrm{M})=\mathrm{CHR} \$(\mathrm{X}): M=\mathrm{M}+1:$ PRINT $"\{$ HOME $\}$ BYTE $" M "=" X \$$
260 NEXTJ:NEXTI
270 RETURN
50 REM ++++READ FROM DISK++++
510 PRINT\#15, "U1: "2;D;T;S
515 GOSUB1 $\emptyset \emptyset \emptyset$
$52 \emptyset$ PRINT\#15, "B-P: "2;1
521 PRINT\#15, "M-R"CHR\$(\varnothing) CHR\$ (17)
522 GET\#15, $\mathrm{R} \$(\emptyset)$
530 FOR I=1 TO 255:GET\#2,R\$(I):NEXT
$54 \emptyset$ PRINT\#15, "B-P: "2;1
$55 \emptyset$ RETURN
6øØ REM ++++FORM PRINT STRINGS++++
605 PRINT" PLEASE HOLD WHILE I ARRANGE THE DATA"
$61 \emptyset \mathrm{~K}=1$: FOR $\mathrm{I}=\emptyset$ TO 255
615 IF R $\$(I)=" "$ THEN $P=\emptyset: G O T O 63 \emptyset$
$62 \emptyset \mathrm{P}=\operatorname{ASC}(\mathrm{R} \$(\mathrm{I}))$
$63 \emptyset \mathrm{X}=\mathrm{P}$: GOSUB $8 \emptyset \emptyset$
$640 \mathrm{P} \$(\mathrm{~K})=\mathrm{P} \$(\mathrm{~K})+\mathrm{X} \$+{ }^{\prime \prime}$ "
65 IF ($\mathrm{I}+1$) $/ 8=\mathrm{INT}((\mathrm{I}+1) / 8)$ THEN $\mathrm{K}=\mathrm{K}+1$
660 NEXT
$67 \emptyset$ FOR $I=\emptyset$ TO K-1
$680 \mathrm{X}=\mathrm{I} * 8:$ GOSUB $80 \emptyset$
$690 \mathrm{P} \$(\mathrm{I}+1)=\mathrm{X} \$+\mathrm{C}: ~ "+\mathrm{P} \$(\mathrm{I}+1)$
700 NEXT: RETURN
710 REM +++++++ HEX TO DEC ++++++++++
$72 \emptyset \mathrm{~L} \$=\operatorname{LEFT} \$(\mathrm{X} \$, 1): \mathrm{H} \$=\operatorname{RIGHT} \$(\mathrm{X} \$, 1)$
$73 \emptyset \mathrm{X}=\emptyset$: FOR $\mathrm{B}=\emptyset$ TO 15
740 IF $\mathrm{L} \$<>$ " ${ }^{2}$ THEN IF MID $\$(H X \$, B+1,1)=I \$$
THEN $X=X+16 * B: L \$=" "$
$75 \emptyset$ IF $\mathrm{H} \$<>$ "" THEN IF MID $\$(\mathrm{HX} \$, \mathrm{~B}+1,1)=\mathrm{H} \$$
THEN $\mathrm{X}=\mathrm{X}+\mathrm{B}: \mathrm{H} \$=" \mathrm{l}$
760 NEXT B
$77 \emptyset$ RETURN
$8 \emptyset$ REM +++++DEC TO HEX ++++
810 $\mathrm{H}=\mathrm{INT}(\mathrm{X} / 16): \mathrm{L}=\mathrm{INT}(\mathrm{X}-\mathrm{H} * 16)$
$82 \emptyset \mathrm{H}=\mathrm{H}+1: \mathrm{L}=\mathrm{L}+1$
$83 \varnothing \mathrm{X} \$=\operatorname{MID} \$(\mathrm{HX} \$, \mathrm{H}, 1)+\mathrm{MID} \$(\mathrm{HX} \$, \mathrm{~L}, 1)$
$84 \emptyset$ RETURN
$1 \emptyset \emptyset \emptyset$ REM +++++ GET ERROR STATUS +++++
1øø1 \emptyset INPUT\#15, EN, EM\$, ET, ES
1øø2ø IF EN THEN PRINT\#15,"Iø":CLOSE15: CLOSE2: PRINT"\{CLEAR,RIGHT9,DOWN1 $\|$ "EM\$: STOP
$10 \emptyset 3 \emptyset$ RETURN
øø: $120141 \emptyset 0 \$ \$ \$ \$ \$ \$$

90: 47414 D 4552 A A A A A
G A M E S

98: $A \emptyset A \emptyset$
$A \emptyset: A D A D 3139 \mathrm{AD} 3241 \$ \$$
Now comes the fun part outsmarting the computer! The only thing left to do is to rewrite the BAM (Block Availability Map), a special type of map in the header in which one bit equals one sector and a one in that bit indicates that the sector should not be overwritten. If there is enough data on the disk being fixed to make using this
program better than NEWing the disk, this would seem like an impossible, or at least forbiddingly tedious, task. But, as usual, there is an easier way. First, exit the program by answering NO to the question about modifications and 0,0 when asked for the track and sector. This will cause the program to update track 18 , sector 0 , which the is disk header that we have been working on. Once this is done, execute in immediate mode a COLLECT command fon the 1540 that is a VALIDATE. 1 This forces the disk drive to update its own BAM, freeing you from the task. If the header was the only thing damaged, this may be enough to correct the problem.
easy TO USE-HELP-Keystroke Commands

- Disk Track/Sector Editor
- Examine and modify disk sector data
- File Fallower - memory for 150 sectors
- Fast 1541 disk compare and error check
- Display Memory and Disk Data
in Hex, ASCII or Screen Code
- Edit full page in hex or ASCll
- Disassemble memory and disk data
- Search memory for string
- Read disk drive memory
-Free sector map (BAM)
- Execute ML routines
- Printer screen dump (serial bus)
- Fast machine code! Compatible with many Basic and monitor programs ON DISK - CAN BE Backed UP!!

To Order: Send check or money order, US dollars Florida residents add 5% sales tax COD add © 2. Call 305-840-0249
Commodors 54 is a ragistsred trademark of Commedore Electranics Ltd

Complete Apple Modem ${ }^{\text {S } 129}$

Single-Slot 300 Baud Direct-Connect Modem for Apple II. II + , Ile and Franklin computers

For translering information between computers NETMASTER s superb error checking and high speed are an unveatable combination Witi a NET MASTER on each end you can transter information three to five times laster than other commu rications packages like Visterm or ASCli Express Error free
Your best buy in modem history The Networker. a plug-in single-stot direct connect modem for the Apple II family of computers. Send electronic man to a friend or business associate use your schools computer access hundreds of computer bulletin boards or thousands of data bases for up-to-the minute news. sports weather. arrline and stock information

Theres absoluteiv nothing eise to buv You ge: the modern board communcation software anc a valuable subscription to America:s premier intor mation service THE SOURCE For $\$ 129$ is at unbeatacle value
This is the modem that does 1 all and does : ' C ' less The Apole Communications Card s on doard so no other intertace is needed lis 300 cauc the most commonly used moderi speed And it comes complete with. NETWORKER Commuricat:ons Scftware on an Apple-compatible disk giving vou leatures no modem offers
Like the ability to iock on-screen messages rto your Appies RAM, and then move the information. onto a disk for easy reference and review A terminal program: that turns your computer into a communications command center. with on-screen med menus contriuous updates of memory usage car reer presence. arc communication slatus
But NETMASTER s not stutly I: will tak to :hose other communicalions packages. but trey dort work as 'ast and they don! check errors ike NET MASTER. Ana NETMASTER dcesnt only work with the NETWORKER mocem Even \dagger you already have another modem for ycur Apple. NETMASTER is an outstanding value in communications software so we seli NETMASTER by iself for $\$ 79$ NETMASTER requires 48 k of RAM one disk drive ano the NETWORKER or arother -
WE EVEN GIVE YOU SOMEONE TO TALK TO!

Your purchase of the NETWORKER with or without NETMASTER comes complete with a membershic to THE SOURCE, with its normal registration fee lully walved. THE SOURCE will put a world of electronic information and commurication services at your ingertips - instantly Electronic mal arid computer conferencing Current news and sports Valu able business and !nancial intormation Travei services. A wealth of information aboul personal computing Even games All fully compatible with your equ:pment. are ready to use at once

To Order Call Toll Free

800-824-7888 Continental US 800-824-7919 Alaska and Hawaii
or anywhere in the world 916-929-9091
Ask for operator \#592

MAIL ORDERS

PLEASE WRITE NUMBER OF IIEMS IN 80X
\square NETWORKER $\$ 129$
T NETMASTER $\$ 79$
I NETWORKER NETMASTER COMBO \$179

NAME

ADORESS

CITY.
Mass. residents add 5% sales tax Total Enclosed
\therefore CHECK -COD

- mastercard
! VISA EXPIRES \qquad

It may be a result of reading an overabundance of IBM PC ads that makes people, without knowledge of microprocessor architecture or assembly language, blatantly predict that MSDOS on the eight bit 8088 chip will become the measure by which all operating systems and microcomputers will be judged during the coming decade. That view is simply wrong and such comments (especially by people who should know better) may be the resuit of an understandable impatience with the performance of slow, memory limited, eight bit microcomputers but to declare that MS-DOS and the 80 XXX is going to be the de facto industry standard is short-sighted at best and misleading at worst.

Ironically, the IBM PC fits the slow 8 bit category. There are other operating systems and microprocessors out there, more powerful than MS-DOS and the 8088. One such is the p-System running on the 68000 .

The p-System is a large, hierarchical menu driven portable operating system that is available on many different mini and microcomputers. There is no need to remember cryptic commands as in most other operating systems. All commands are shown in English, on a menu line, at the top of the screen.

A group of students at the University of California at San Diego began writing the p-System under the direction of Dr. Kenneth L. Bowles in 1974. A minicomputer with a hard disk
was used as a "development system," a procedure whose significance will become apparent later.

Dr. Bowles originally called it "the UCSD PASCAL SYSTEM,"' which was a tactical error; not everybody likes the PASCAL language so some people were "put off" by this aspect of the original operating system. The present P-System has nothing to do with any specific High Level Language (HLL), many HLLs other than PASCAL run under the p-System including BASIC. It is now a stand alone operating system. The p-System was written in PASCAL and then compiled to P-Code. To give you an idea of the significance of this statement, I will try to explain a few facts about compilers and interpreters. (A compiler is a utility program that
converts HLL programs to native machine codes in one continuous operation, before any attempt is made to run the HLL program.)

P-Code is a compact intermediate code that is interpreted by a P-Code interpreter program. HLL programs written with interpreters run much slower than the same programs written with a compiler because this conversion has to be done while the HLL program is running. Compilers do it only once; thereafter, only the native machine code is run. Here, the interpreter is converting a partially compiled, intermediate P-Code instead of HLL source code. This scheme results in program code that is compact and that executes faster than a pure interpreter, but not as fast as a pure compiler.

When implementing the p-System, a P-Code interpreter program is written for each different type of microprocessor, it being quicker and cheaper to write a P-Code interpreter than it is to write a complete microprocessor specific compiler. This allowed the p-System to be quickly transported to new microprocessors as they appear. That was important ten years ago. However, we can expect that fewer entirely new, general purpose microprocessors will be introduced in the foreseeable future.

General purpose microprocessors are becoming so complex and require so many years of hardware and software development that it is highly unlikely any entirely new designs will make up for the software head start that the 68000 and its 32 bit derivative, the 68020, presently enioy.

The use of this P-Code interpreter would later be rationalized by purveyors of the p-System who emphasized the alleged portability of programs in P-Code form. |Portability refers to the ease of moving a program written on one type of computer over to another and making it run.| The truth is, there is nothing more portable than source code in a reasonably standardized (HLL). ("Source" is what you type into the computer when you sit down and write a program, "Line 10 FOR X $=1$ TO 99: NEXT X " etc.)

Source code written for a micro in a given HLL can usually be transported over to a new compiler or interpreter in ASCII form. An editor can then be used
to search and replace any differences in syntax or I/O features. There is no speed penalty paid for this kind of portability - but software authors worry about the ease with which source codes can be plagiarized. Authors would rather sell programs in P-Code form which is much harder to decipher and plagiarize.

When the UCSD p-System was written, 32 K of RAM was typical for a minicomputer. To avoid problems with such limited memory, program modules were designed to be loaded into the small RAM address space from a fast (expensive) hard disk as needed, a process called "module swapping" or "virtual memory." In this way a large and powerful operating system could be used in a computer with as little as 64 K of RAM. Large application programs could also be written in modular fashion by committees of programmers. It is in the nature of the UCSD p-System to allow such modular programs |as well as to link HLLs, such as BASIC, to assembly language). Even individual application programmers prefer to write large business programs in small manageable modules.

On the other hand, operating system program modules called from a hard or floppy disk into a small address space are at a decided speed disadvantage; the procedure is slower than having all the operating system code in RAM at the same time. Therefore, the way to speed up this operating system is to load all those old software modules into an area of RAM called a "RAM disk" or "disk emulator." Fortunately, the 68000 has high-speed machine-language block move instructions to swap modules out of RAM instead of mechanical disk. The UCSD P-System comes alive when it operates entirely in RAM on a fast 68000 and is far superior to any other popular operating system presently available on a micro. It is a real eye opener to have an 80 K text file, a powerful program editor and a compiler or assembler in RAM, all at the same time. The age old cycle of compiling your program, finding the errors, reloading the editor, reloading the text file, correcting the error, saving the corrected text file, reloading the compiler and recompiling the program is almost instantaneously achieved by pressing less than half a dozen keys.

The p-System was not always this easily used. The early acceptance of the very large |over 100 K | p-System was retarded when Apple Computer tried to use it on an 8 bit 48 K Apple II with only 143 K on the floppy disk. To get just a directory or catalog on the video screen, the p-System filer program module had to be loaded into RAM from a floppy disk, a very slow and frustrating experience.

Ironically, the p-System worked much better on the Apple III, which had large bank switched RAM space and a hard disk. Not enough Apple IIIs were sold to improve the reputation of the p-System. We believe that the p-System on the Apple III was used by Apple Computer to write (in PASCAL) the operating system for the Lisa. Mike Markula, past president of Apple Computer, mentioned that he thought that the Apple III running Apple's version of the p-System was the best software development system on the market. It probably was at the time, but not for writing operating systems in a HLL. Writing the Lisa's operating system in a high level language was a dumb idea. This is one possible explanation for the original Lisa's slowness.

Large numbers of p-Systems were sold for the Apple II, thereby giving the P -System a reputation as being cumbersome and slow on micros in general. Its implementation in 512 K RAM disk on the eight mhz or faster 68000 is helping change this image.

The p-System needs over 100 K of memory because it is a very large and comprehensive operating system with a complete complement of programming tools including:
A) A program editor with search-andreplace, block move, forward and backward scrolling and save functions, which is fast and easy to use. For example, in the event of a syntax error during program compilation, the p-System will automatically and quickly, in three or four seconds, reload the source text file from RAM disk and return the cursor to the error on the screen with one or two keystrokes. This is handy for writing compiled programs by trial-and-error. (Don't laugh, it works). The p-System editor is far better than ED on CP/M 68 K (which, admittedly, isn't saying
much|. It is a real eye opener to have a 100 K text file in RAM and be able to jump from the beginning to the end in only three seconds (no mistake - 3 seconds!!!!!!. Try that on your Apple II.

At one time we did a lot of 6502 assembly language programming on the Apple II, and we were not satisfied with the speed or the memory capacity. We investigated ways to get all those 6502 assembly language text files out of the Apple II into the Sage II in p-System editor text file format, and finally discovered a way to upload Apple II assembly language text files to the P-System editor. We were then able to cross assemble them after a few changes with the editor. An unexpected bonus, most welcome.) BASIC and PASCAL text files were also uploaded. The secret to doing this is to use the Apple II serial printer interface and a utility on the p-System called "TEXTIN". The P-System program editor's replace function is easily used to change 6502 assembly language pseudo-ops and Applesoft BASIC commands to conform to p -System language requirements.
B) A general purpose 68000 macro assembler (and cross-macro assembler) which assembles code for almost any microprocessor. Each set of mnemonics is loaded separately.
C) A linker to link assembly language modules, as well as high level language modules including BASIC, to other high level language modules as well as to themselves. You can even link a PASCAL procedure to a BASIC program and use it as a subroutine.
D) A very fast, comprehensive and flexible disk operating system.
El Compilers for BASIC, FORTRAN, PASCAL and MODULA II, among other HLLs. These compilers compile to P-Code, which can then be partially compiled to 68000 native code using the p-System's Native Code Generator. (Unfortunately at the present time, this Native Code Generator does not compile all P-Code to native code, only selected routines. The P-Code interpreter program is still needed in RAM to handle the remaining routines). A further increase in speed could be achieved by rewriting this Native Code Generator to compile all P-Code to native code. The entire p-System could then be compiled to native 68000 code.

UNIX operating systems are getting a lot of attention in the computer press lately. UNIX has several desirable features as does CP/M-68K. The p-System, however, has much more application software to run on the 68000 than CP/M-68K or any UNIXlike operating system |a reason in itself why the p-System is becoming the de facto standard operating system on the 68000). To my knowledge, there are less than a dozen application programs for CP/M-68K or UNIX. At last count over 250 packages were available for the p-System. Most of this application software for the p-System was first written for Apple IIs with the PASCAL language card and minicomputers running the UCSD p-System. There are several of each, very good wordprocessors, data base and spreadsheet programs. As the use of low cost 68000 computers that use the UCSD p-System grows, the body of copyable software for the p -System should also increase. A 248 page book that lists all the software is available from Softech Microsystems, San Diego, CA., for six dollars.

Although the p-System was written in PASCAL, compiled to P-Code, then interpreted and module-swapped, it runs faster on a 8 MHZ 68000 micro, using a RAM disk, than any UNIX or UNIX-like operating system that we know of. Not only is UNIX a highly modular operating system, but it has the greater disadvantage of having been written on an older, more memory limited, minicomputer than that used to write the p-System. Most - if not all - UNIX-like systems were written in ' C ' and compiled to assembly language, then assembled to native machine code (which is in the nature of writing with ' C ').
' C ' based operating systems should be faster than systems written with a pseudo compiler which uses a P-Code interpreter; therefore, UNIX should be faster than the p-System - but it isn't. One possible reason for this is the fact that UNIX program modules are stored on hard disk in fragmented blocks and swapped in from hard disk to small areas of RAM ivirtual memory). Thus the additional unnecessary complexity and number of modules in UNIX make UNIX slower. Maybe it will come alive when 2
megabyte RAM disks are common. UNIX is also a multi-user operating system when what is really needed is a one CPU per user, net-worked operating system. \Single CPU, multiuser systems, went out with high priced, discrete chip central processing units such as found in mainframes and minicomputers. Microcomputers (less disk drives) now cost little more than dumb terminals used with the old multi-user CPUs.) These are some of the reasons that the UNIX running, multi-user, Fortune 500 and the Radio Shack Model 16, 68000 micros are slow, compared to a single-user 68000 running the p -System.

The UCSD p-System in RAM disk on a 68000 is usefully fast; UNIX, at this time, is not. Yet, the p-System's performance could be improved even over its present capabilities if it were rewritten to take advantage of the 68000's large (16 megabyte) lincar address space. Rewriting the p-System would preclude having to swap modules from RAM disk and thereby make it more efficient.

Nevertheless, the p-System is becoming the de facto standard, 68000 personal computer, operating systcm, something the 68000 community needs. There are already a surprising number of low-cost 68000 microcomputers running the UCSD P-System. The following microcomputers deserve serious consideration, described in order of usefulness-per-dollar, according to our own personal preferences. While our tastes may not be the same as everyone's, it would be nice to think that at least we represent a reliable cross-section of knowledgeable micro users:

Sage II

(\$3200) Sage Computer

Upon reading an ad in "Byte" for the Sage, we contacted Sage Computer for dealer information. We were pleasantly surprised when a knowledgeable salesman appeared and demonstrated the machine, which initially impressed us because it came with p-System, wordprocessing, spreadsheet, PASCAL and a 68000 macro assembler, along with an assortment of other software. When we saw the extensive
documentation, the schematic, the memory map, the powerful system monitor in 16 K byte EPROM, and the monitor source listing - in other words, a completely open system - we were sold

The experience was like that of a few years before, when we were first introduced to the Apple II, except that with the Sage we were given an extensive assortment of software and a built in printer interface just to start up our acquaintance. In short, we bought a Sage and have been pleased with this supermicro to this day; it has proven its reliability and speed.

Floppy disk access and load times (20 K per sec.) execute on the Sage about ten times faster than on the Apple II disk operating system (DOS) and BASIC programs run four times faster than on IBM's Personal Computer. It is as fast to program in high level compiler languages as using interpreters on 8 -bit machines. Our assembly language programming productivity doubled with the Sage. Word processing spelling checkers, too slow previously, are viably fast.

An unexpanded, 256 K Sage II costs approximately $\$ 2600$ (discounted). You can plug in your own 64 K bit dynamic RAM chips for 512 K bytes and your own second Mitsubishi floppy disk drive; sockets, cables and connectors are provided with the unexpanded machine. Industry standard, one hundred and fifty nanosecond, 64 K bit RAM chips cost about six dollars at the present, and 36 chips make up 256 K of parity RAM memory. A Mitsubishi floppy is presently about $\$ 350$.

The Sage II boasts 24 bit address, 16 bit data bus, expansion connectors. It comes with a built-in Centronics parallel printer port, an IEEE-488 port and two RS- 232 serial ports, one of which is used with the terminal, the other already set up for a modem. The standard drive uses five-inch doubledensity double-sided floppies with 640 K on each disk. Very expensive options include hard disk up to forty megabytes and a six-user system with 1 megabyte RAM. Unfortunately the clock is not battery backed up.

Several other operating systems will run on the Sage, including CP/M-68K, Mirage, PDOS, BOS/5 and Idris (a Unix-like operating systeml. Languages that run under the standard
and optional operating systems are several versions of Fortrans, BASIC, ADA, Forth, Cobol, Microcobol, APL, Modula II and several 'C's. The Sage requires a separate RS232 terminal.

Pinnacle

(\$3895). Pinnacle Systems

The Pinnacle comes with just the p-System run-time package. The rest of the p-System is optional. The Pinnacle is equipped with two double sided, quad density, 800 K half height floppy drives. 512 K byte parity RAM is standard. RAM expansion to one megabyte costs $\$ 1295$. Pinnacle is extremely cost effective particularly in the 10 MEG hard disk version at only $\$ 5995$.
[Editor's Note: The authors included two paragraphs questioning Pinnacle's claim to run at 12 Mhz . We contacted Pinnacle and they stated that "... the Pinnacle runs at 12 Mhz and has done so since June of 1983. This is possible by using prequalified selected parts.'"]

The Pinnacle has no less than seven serial ports, one parallel printer port, an Omninet networking bus and a Sasi hard disk interface in the basic machine, as well as a battery-backedup clock and calendar.

The video display and keyboard aren't built-in on the Pinnacle, unlike the Apple II; a separate RS232 serial terminal is required. However, not having a built-in display and keyboard can be advantageous, because the buyer only pays for what he needs. Separate 19.2 K baud serial terminals are also faster than most built-in HiRes bitmapped displays (another reason the 68000 bit-mapped Apple Lisa is so slow?). This is due to the dedicated CPU in all terminals (multi-processing if you will) that has nothing else to do but update the screen while bit mapped displays are usually updated by the main CPU. An RGB color terminal costs about the same as an RGB board and color monitor for the Apple II or the IBM-PC, and this way the buyer can choose according to preference. Something not to overlook is that most microcomputers can be used as terminals.

The question being asked these days is, "Will the company be here next year?"' Pinnacle Systems is part of a
larger company that specializes in manufacturing complete computer boards. The excellent design of the four layer Pinnacle processor board is testimony to their expertize in this area.

Dimension 68000

(Under \$4000) Micro Craft Corporation This machine reputedly took 16 months to engineer. Its 68000 chip runs at 7.2 Mhz and optionally runs the p-System. Idris, Mirage, Unix 5, S1 and Concurrent DOS 4.0 will be available soon. $\mathrm{CP} / \mathrm{M}-68 \mathrm{~K}$ is standard. The amazing attribute of the Dimension is that it will run almost any other company's or microprocessor's software. Micro Craft has engineered plug-in CPU cards that not only run the software of other popular machines, but automatically reconfigure the disk drive format and video display to imitate the hardware configuration of the simulated machine. In other words, when imitating an Apple II, the disk drives have 143 K and the display has 40 characters across, upper case only.

The display can handle up to 100 characters across and up to 48 lines. There is a color graphics mode, 160 X 480 pixels in 16 colors and a black and white graphics mode of 640 X 480 pixels. 512 K of RAM can reside on the main board. The Dimension comes with 256 K of RAM. Chips can be plugged in to increase memory up to 512 K . A six-slot internal expansion but is provided. 3.5 megabytes (al) of RAM can be plugged into these expansion connectors, using 64 K bit dynamic RAM chips on 512 K byte plug-in cards costing $\$ 1295$ each. When 256 K bit dynamic $\$ 37$ RAM chips become lower in cost (next month), 12.5 megabytes in the box are possible, although the power supply might have to be changed to install 12.5 megabytes of RAM. An optional expansion interface will allow another 4 megabyte of directly addressable RAM for a total of 16 MB .

To put 16 megabytes of RAM in perspective, the largest and most expensive supermini that the Digital Equipment Corporation manufactures is the VAX 11/782, which costs about twice as much as a VAX $11 / 780$ and the maximum amount of memory it can address is 8 megabytes (Mini-Micro Systems magazine.)

Extra-cost half-height five inch double-sided 800 K byte floppies are available. The standard machine comes with two $5-1 / 4$ inch, 400 K byte floppies; serial, parallel and game controller interfaces. A 50 megabyte hard disk and controller costs $\$ 4995$.

Hewlett Packard 9816A

(\$3995) Hewlett-Packard

The HP 9816A is a 68000 personal computer with a too small, nine inch CRT having a 400×300 pixels graphic capability. The indispensable disk drives are a lot extra. The HP 9816A uses the 270 K Sony three-and-a-half inch floppy disk drives at only $\$ 900$ each, but the hard-shell media for this drive are presently hard to find and expensive. The use of these drives and media on the Apple Macintosh will probably change this. Dual 540K, five inch drives cost $\$ 2230$. The same Tandon drives bought "off the shelf" from an electronics distributor cost \$250 each.

The HP 9816A runs the UCSD p-System version 2.1 (everybody else uses version 4.13) at an extra $\$ 1515$. There are 128 K RAM, a well thought out RS232 and HP-IB (IEEE 488) interfaces built in. Additional RAM cost about $\$ 1100.00$ for 256 K , while on the Sage or the Dimension 256K RAM would cost $\$ 300$ to $\$ 650$. There are various other well engineered, expensive options on the HP 9816A such as plotters and graphics tablets. Apparently, HP means High Price.

Corvus Concept

(\$3995) Corvus Systems

The UCSD p-System runs on the Corvus Concept as a $\$ 695$ option. The CPU is an 8 mhz 68000 . It has a large (15 inch) crt display, 132 columns by 66 lines and 720 X 560 HiRes graphics. The display is black and white only. The bit-mapped design makes the display update slower than a 19.2 K baud terminal. A large speed improvement could be made by Corvus if they put a dedicated micro in the display with the sole purpose of updating the display.

Believe it or not, the Corvus Concept has a 50 pin Apple II expansion bus! There are two built-in

RS232 serial interfaces and an Omninet interface. The Corvus also has a battery-backed-up clock and calendar and 512K of RAM in the box. From a marketing viewpoint, a weakness of the Concept is that it doesn't come with any floppy disk drives. Single 750 K five inch floppies are a lot extra ($\$ 750$). A further handicap is a rather slow access time (1 megabit per second) Omninet, networked hard disk. A hard disk with an eight bit parallel interface is also available that should be somewhat faster.

However, the Corvus Concept is worth considering if the system must support more than about four users, because it can utilize a network. Multiusing eventually boggs down any single CPU, even the 68000. By comparison, Digital Equipment Corporation offers the VAX $11 / 780$ with 96 users. Can you imagine 96 users, all trying to compile different programs at the same time, on one CPU no faster than a fifty dollar, 12 mhz 68000 microprocessor? (Maybe Digital doesn't think all 96 users are going to be on-line at the same time.) Multi-user, single CPU timesharing systems are simply obsolete. Networked microprocessor CPUs are the only answer.

Saybrook

(\$995) Analytical Engines

This is an add-on 68000 computer for the Apple II. It has an 8 mhz or optional 12.5 mhz CPU and 128 K of RAM onboard, expandable to 512 K with 256 K bit chips. The Apple II quickly communicates with the 68000 computer by means of DMA (direct memory access). The weakness of this approach is the Apple's slow disk operating system and the limited storage capacity 143 K Apple disk drives. On the other hand, program execution and video screen updates are very fast, particularly for HiRes animated graphics. [The Apple II has a rather unique and very fast screen update scheme. In effect it is a dual processor. The first is the main 6502 CPU. The second, very simple processor, made from discrete TTL chips, has nothing else to do but refresh the screen and the dynamic memory.! Analytic Engines claims 10 to 30 times the speed of the Apple II with the 68000
running programs out of RAM dedicated to the 68000.

The computer comes with the p-System and a choice of one of the following languages: UCSD PASCAL, FORTRAN, BASIC compilers or an Applesoft-compatible BASIC interpreter. The Saybrook has a 24-hour clock (but it's not certain that this clock is backed up by a battery).

These are the presently available low-cost 68000 microcomputers running the UCSD p-Systems. In the near future other 68000 computer manufacturers will probably hitch a ride on the p -System bandwagon, the mouse and Apple's Macintosh to the contrary. The Apple Lisa II would be a fine candidate as would the Radio Shack Model 16 and the Fortune.

You have to try the p-System on a fast 68000 machine with RAM disk to understand the difference between the various other operating systems and the very real advantages offered by the p-System and a fast and powerful 68000. Any of the above microcomputers (where available) are worth a trip to the computer store.

Manufacturer's References

Analytical Engines
3415 Greystone, \#305
Austin, TX 78731
512/346-8430
Corvus Systems
2100 Corvus Drive
San Jose, CA 95124
408/559-7000
Hewlett-Packard
19447 Pruneridge Avenue
Cupertino, CA 95014

Micro Craft Corporation
4747 Irving Blvd, Suite 241
Dallas, TX 75247
214/630-2562
Pinnacle Systems
10410 Markison Road
Dallas, TX 75238
214/340-4941
Sage Computer
4905 Energy Way
Reno, NV 89502
702/322-6868

Atari/Epson Custom Characters

Transfer almost unlimited customized alphabets to paper - accurately.

Requirements: Atari 400/600/800/ 1200, 850 Interface, Epson MX-80 with Graftrax + , or MX-80 FT or MX-100, or FX-80

When it comes to dealing with text, the Atari computers have a marvelous flexibility. Naturally, they can display the usual upper and lower case, numbers and punctuation. Besides that, they also have inverses of all the standard characters, plus lines, card suits and a host of other graphics characters. If you're not satisfied with this selection, you can make your own custom characters which has led to programs using gothic, script and other interesting fonts. You can generate your own fonts with one of the many character-editing programs that have been published. All these can easily be displayed on the screen, but transferring them to paper is not normally possible.

Why? There are a number of reasons. The main one is that printers are not designed for any one particular computer. Only alphanumerics and punctuation symbols are in the standard ASCII table. The maximum possible number of characters is 256 (each character stored uses one byte; a byte can be in the range of $0-255$, hence, 256 possibilities). These standard characters fill up less than half of the available room, so Atari decided to pack the rest with inverse and graphics characters. Radio Shack, instead, throws in a combinations of block characters. Commodore has inverse characters and different graphics characters. The point here is that apart from normal characters, no two computers have the same set of 'extra' characters. As such, a printer
manufacturer catering only to one computer would have a limited audience. Epson has a viable solution; they have their own characters, an italic set and a few graphics characters. The important fact is that the Epson printers have full graphics abilities. We can take advantage of this to generate Atari's own special and custom characters. All you need is the appropriate software. I've included listings of two somewhat similar programs; one useful and one frivolous.

Any-Text File Lister

The program shown in Listing 1 lists files to an Epson printer. At first this may not sound amazingly useful. I mean, from Basic, this is merely a matter of issuing a LIST "P:" command. From the DOS utilities menu you can copy a text file to P:. but what makes this program useful is that its listing is accurate: it includes all the graphics and inverse characters. If you've ever tried listing a program with graphics or inverse, you'll know that inverse shows up as italics and graphics characters show up as meaningless garbage, or some odd control character will throw the printer into a stupor that will mess up the rest of the listing. This program lists out a program in its exact form, graphics and all. If examined closely, you can see that this program was used to list itself.

Using this program is simple. If there is a Basic program you wish to list, load it in from disk (or cassette) and then re-save it out under a different name using a LIST "D:name" command, rather than the SAVE command. The purpose behind this is to have the program as text, rather than encoded in Basic keywords. If it's a text

by Mike Bassman

file you want to print, you clearly don't have to do this. Next run this program and enter the name of the file your text is in. That's all it takes.

Custom Font Message Printer

The program in Listing 2 will print anything you want in a custom character set. If you've ever had a desire to see a message in script or computertype letters or whatever, this will do the trick. All you need to have are the custom fonts stored on disk for cassette) in a nine sector file as generated by Instedit (APX) or just about all of the other character generators. There are a few examples of its handiwork shown in the accompanying chart. From top to bottom, the alphabet is shown in computer-style, gothic, fancy fonts and a few others. Making use of this program (custom font message printer) is even easier than the file lister above. Just run it and, when prompted, enter the name of your character set and then the message you want printed. If your character set is stored on cassette, type C : for the character set name, when asked

Custom Font Variant

Listing 4 shows a program that looks a good deal like the custom font message printer. In fact, it is a cross between that program and the program lister. It does the same thing as the custom font program except that it prints out a whole file in the new font rather than a one line message. This would be useful to take a file generated with a word processing program and, after putting it through this program, end up with a professional looking document printed
in a pleasant typeface of your choice. There are some commercially available programs which do just this. Using it consists simply of entering the name of the font and the name of the file to be printed.

Entering The Programs

Typing in these programs can be a bit of a problem because of the machine language subroutine embedded in them. The Basic part is easy to do. The straightforward approach is to type those graphics characters just as you see them. The graphics keyboard included in the Atari Basic Reference manual is a guide to finding all the right keys (the back cover has a relatively easy to use diagram). If you do decide to do it this way, make sure that you save the program before running it. Any typo could bomb the computer; let this be a word to the wise.

Another method is to assemble the source code using the Assembler/ Editor cartridge or one of the many other assemblers available. The source code for the machine language portion is shown in Listing 3. The programs all use the same machine language subroutine, so the most difficult part only has to be done once, even if you want all the programs. The amount of code needed to be typed in this way is longer than typing the graphics characters, but fortunately the code is made up of normal alphanumeric characters. You then assemble the code to a disk file and modify either of the programs to load in this subroutine from that disk file. If you choose to do it this way (not highly recommended), the changes to listings $1 \& 2$ are as follows:
1 - Delete lines $11,12,13$.
2 - Add lines 90-130 as shown.

90 OPEn \#3,4,0, "D:ASSEM.OBJ"
 100 FOR K = 1 TO 6:GET \#3,X:NEXT K 110 TRAP $130: \mathrm{K}=0$
 $120 \quad \mathrm{~K}=\mathrm{K}+1$: GET \#3, X:
 ML\$(K,K) $=$ CHR $\$(\mathrm{X}):$ GOTO 120
 130 CLOSE \#3

The modification here can be used with both programs and with the variant by changing the line numbers. The filename in line 90 is your assembled version of the source code. These programs are very similar, so if you want to have all of them, I would recommend typing in one of them, saving it, and then modify it
until you have the other program. Conversely, if you're only bothering with one program, keep in mind it doesn't take much effort to obtain the other ones.

Theory of Operation

You already have all you need to know to get these programs working. But if you want to know how they work, and maybe do clever things of your own with your Epson, read on.

You may ask how we get a large number of new character sets out of a printer normally limited to regular and Italic characters, in various sizes. Well, these programs don't exactly print out new characters, they draw them. All reasonably new Epson printers (or old ones retrofitted with Graftrax +| have the ability to do graphics. There's no reason to limit use of the graphics to charts or drawings; you can also improve on your regular text performance. The basic task to be accomplished is to get a character from the file, find out how the character is drawn, send this information over to the Epson and repeat this procedure until you reach the end of the file (or message).

Where Character Shapes Are

The character set in use can be found at the address specified by PEEK(756) *256. Location 756 (2F4 hex) is the Character Base register, holding the high byte of the address. The low byte is assumed to be zero. The standard character set is at $\$ E 000$. Though the topic has been more comprehensively covered in other articles, let me quickly refresh your memory on how they (the characters) are stored. Each character can be 8 bits wide and 8 bits high, total of 8 bytes (64 bits). Usually there is a little room on top, bottom and the sides so that characters won't be squeezed too tightly together when shown next to each other. Each row of a character is one byte and there are eight rows going from the top to bottom of any one character. So the capital letter " E " is represented in memory like so:

$$
\begin{array}{ll}
00000000 & \text { byte }=\$ 00 \\
01111110 & \text { byte }=\$ 7 \mathrm{E} \\
01100000 & \text { byte }=\$ 60 \\
01111100 & \text { byte }=\$ 7 \mathrm{C} \\
01100000 & \text { byte }=\$ 60 \\
01100000 & \text { byte }=\$ 60 \\
01111110 & \text { byte }=\$ 7 \mathrm{E} \\
00000000 & \text { byte }=\$ 00
\end{array}
$$

Getting a Character to the Printer

This is how the computer reads a normal or redefined character. Now we've got to send this information out to the printer. Things would be simple if the printer could be fed the character a byte (row) at a time, just like the computer understands them. But this isn't the case. While the computer reads a character a row at a time, from top to bottom, the printer head is a vertical column, so it does each character a column at a time, from left to right. This makes life difficult. What we're going to have to do is take each byte that forms a row of the character and take off the leftmost bit. We're going to take these bits off all eight rows, line them up in a column and then send the column off to the printer. Then we do this for the eight columns that make a character, from left to right. Visually, this means that instead of taking slices of bits off the top of say, that ' E ' we saw earlier, we take slices vertically off the sides.

Theory into Code

This cut and paste type of operation with bits can be turned into a basic program. To output one complete character, we need two loops, one going from left to right sending out columns of data and an inner loop that puts together these columns. There's a chart showing each pin of the print head and what is needed to turn it on:

$128-0$
$64-0$
$32-0$
$16-0$
8

For each of the pins you want to turn on, add that number. For example sending a 34 would turn on the third pin from the top and the second from the bottom. It's no surprise that each of these values is 2 to the power of the pin number (pins numbers range from 0 to 7, bottom to topl, and we'll use this fact. To find out if we want to turn on a pin, we look at a row of the character, AND it with the column number we're up to and, if we get a positive value, we know to turn it on. Column numbers, not coincidentally, are represented just like the pin numbers but from right to left, instead of bottom

to top. This strategy is represented in the following piece of Basic-like code.
$\mathrm{J}=\mathrm{ASC} \mid \mathrm{CHARACTER}$)
$A=A D R(S T A R T O F C H A R A C T E R-$ DATA)
FOR B $=7$ TO 0 STEP -1 :REM the outer column loop.
SUM $=0$:REM clear the print head counter.
FOR G $=0$ TO 7:REM inner loop totals up a column.
$\mathrm{Y}=\operatorname{PEEK}\left(\mathrm{A}+\mathrm{G}+\mathrm{J}^{*} 8\right):$ REM get the row value.
$\mathrm{X}=\mathrm{INT}(2 \quad \mathrm{~B}+.5):$ REM the column number.
$\mathrm{Z}=\mathrm{X}$ AND $\mathrm{Y}:$ REM you can't do a boolean AND in Basic, but you get the
idea.
IF $Z \quad$ THEN $S U M=S U M \quad+$ INT $(2 \quad(7-G)+.5):$ REM add pin value to running total if we should.
NEXT G:REM do it for the entire column.
PUT \#4,SUM:REM output the column to printer.
NEXT B:REM now do this for all 8 columns.

This is ridiculously slow when done in Basic, so the machine language subroutine just uses this algorithm, but runs infinitely faster. There is only one other thing you need to know to control the Epson. Before you start
sending all this pin information, you have to tell it to go into high resolution mode and then say how many columns of graphics you want. Turning on graphics is done by sending an ESCAPE, then a " k ". You tell it how many columns of graphics by sending out two more values, the first being the low byte of the \# of columns, the second being the high byte.

That's all there is to making your Epson print anything you want. The programs listed here are only a few of the possible applications. Using some of the information shown here, you can invent new and interesting uses for your printer.

```
    13
```



```
    17 I=6:DIM H5<\13,N5<2553
```



```
    30 A=PPEEKC75G3拃256
    40BIH M5<153,NH5C153
    5%GEMPHICS 1%
    G# POSITION 5, (:? #G;"GM% TEMT",
```



```
* Listing 1
    19 DIMMN采C3003
```



```
    17 I=0:DIM H5<113, MS <255)
    2@ H5="&**/-ト/n\*"
O 3G A=TPEEK<756) #256
    4@ BIM NS(15),NMS(15)
    5G GRAPHICS LA
06G POSITIOM 5,1:? #6;"ONY TEHT"
```



```
    8@ POSITION 5,5:? ##6;"for epson"
* OO FOR K=1 TO 20@@:MEHT K
    190 GRAPHIES G:POSITIOM 2,6
    20@ ? "Please enter the mame of the disk file which cont
* ains the program to be lissted. cex: PROG.BA5%"
    210? :? "Name of program:"
    22@ TRAP उ50:MMS="DD:":INPWT NS:MMSGLEN(NMS)+1)=M5
* 23G OPEN #3,4,6,NMS
    24G IMPNT #3,MS
    27日 TRAP 40G
285 Q=LEM(MS): IF LEN&MF)>6@ THEM Q=60
299 I=G: J=QFEB:IF \\255 THEN I=1:J:={-256
    295 OPEM 44,B,G,"P"
```



```
01@ FOR K=1 TO Q
```



```
    322 IF J<32 THEN J=\+64:G0TO 33G
0324 TF J<224 AND J>159 THEN J=J-32:GOTO 33O
    326 TF J<<6G ANB J\127 THEN J=J+64
    330 DHMMY=H5R(ABR&ML5%,A,N)
(0) 340 MEHT K:PHT H4,27:PWT H4, E4:CLOSE H4:LPRIMT
    342 TF O<LENCMS\ THEN MS=H5 6E1):GOTO 2#5
    345 TRAP 350:GOTO 24@
* 35@ CLOSE H3:CLOSE H4:GRAPHICS 1G
    360 POSITION 6,4:? #6;"al1 done",
    37G FOR K=255 TO G 5TEP -1:50|ND O,K,12,5:50UND 1,255-K,12,3
* : NEHT K:5OLND 1, 0, B,G
    3@G GRAPHICS O:END
```



```
0200
```



```
    414END
```



```
    439 EMD
```


白的
Listing 3

3日 DIM B5（1924）：A＝ADRC日5）
49 DIM NS（15），NMS（15）
5G GRAPHICS 18
6日 POSITION 4，1： 7 \＃6；＂CUSTOM FONT＂

8日 POSITION 5．9：？\＃6；＂for epsoni
10日 FOR K＝1 TO $2009:$ NEKT K
146 GRAPHIES G：POSITION 2，6
$150 ?$＂RPGPGIETR：maximum of EG characters＂O
$16 \sigma^{7}$ ？？＂Please enter message you wish to printar＂
170 ？＂Message：＂：TRAP $140:$ IMPLT MS
1BG TF LEN CMSI＝THEN 14 T
19G GRAPHICS G：POSITION 2 ， 6
206 ？＂Please enter the name of the disk file which cont
ains the character forttobe used cex：Gith．SETM＂：O
210 ？：？＂Name of character set：＂

23 OPEN H3，4，G，NMS
246 FOR K＝TO 1923
25 GET H3，B
269 POKE $A+K, 1 B$
27 NEHT K：CLOSE म3：TRAT 4 GG

310 FOR K＝1 TO LEN（MS）

34日 NEMT K：PNT H4，27：PHT \＃4， $44: C L O S E$ H4：LPRTNT
350 GRAPHICS 1B
360 POSITIOM 6，4： 7 \＃6；＂all done＂

：NERT K：SOUND $1,0, \theta, \theta$
उ8G GRAPHICS G：END

209

41 END

436 END

©

Printer Sample
－Listing 4
19 DIM MLSc3ag？

17 I＝G：DIM $\mathrm{H} 5(11)$ ，M5（255）

O3＠DIM BS（1924）：A＝ADR（B5）
4 （DIM NS（15），WMS（15），MMS（15）
SG GRAPHICS 18
O6G POSTTION 4，1：？\＃6；＂CHSTOM FOMT＂
79 POSITION 2，5：？\＃6；＂LIESEERE PMENTET＂
A6 POSITION 5，9：？\＃6；＂for epson＇＂
O19GFOR K＝1 TO 2000 ：NEKT K
110 ？ipiease enter the name of the disk file which cont
ains the character fontto be used cex：GoTH．SETM：
012 ？：？＂Mame of character set：＂

140 OPEN \＃3，4，O，NMS
159 FOR K＝O TO 1023
16 GET \＃ふ，B
179 POKE A＋K，B
18 WEST K：CLOSE \＃3：TRAP 468
209 GROPHICS G：POSITION 2，6
219 ？＇iplease enter then name of the disk file to be prin
ted．Cex：FILE．BAS3＂
O220？？？＂Name of program：＂

249 OPEM \＃3，4，6，MM5
O256 INPLT H3，MS
269 TRAP 496
270 Q＝LEN（MS）：IF LENCMS3＞6日 THEN $Q=66$

（1） 310 FOR $K=1$ TO Q

324 IF $1<224$ AND J

उЗG DUMMY＝USRCADR（MLS），A，J
346 NENT K：PHT H4，27：PHT H4，64：CLOSE H4：LPRINT
（342 TF Q＜LEN（MS）THEN MS＝MSG61）：GOTO 270
345 TRAP 359：GOTO 250
359 CLOSE H3：GRAPHICS 18
© ${ }^{360}$ POSITION 6，4：？tas；＂all done＂．
376 FOR K＝255 TO 5 TEP－1：5OLND O，K，12，5：5OUND 1，255－K，12， 3
：WEKT K：SOLWD $1,0,0$ ， 0
O 3 G日 GRAPHICS O1END

119

© 419 EMD

436 END

Greater mathematical precision and a way to calculate the lunar-based Jewish Calendar.

by Rolf B. Johannesen

Many common implementations of BASIC in microcomputers today use a binary representation for real numbers which has either 24 or 32 bits for the mantissa and 7 bits for the characteristic. This translates to either 6.1 or 9.5 decimal digits of precision, respectively. Occasionally, greater precision is required: statistical calculations are notable in requiring many extra digits of precision during the intermediate stages of calculations because so many results are derived as the differences between two numbers that are almost equal, so that several of the most significant digits are lost in a single step.

Computer software for processing arithmetic statements never warns that bits have overflowed the mantissa, even though this will inevitably result in loss of precision. However, overflow of bits in the characteristic is always flagged. The program in Listing 1 will test any computer for the length of mantissa in its floating point representation and report it both in terms of bits and equivalent number of decimal digits. The largest integer that can be faithfully represented has a mantissa of all ' 1 ' bits, and is
equivalent to $2 \uparrow \mathrm{M} 1$ if there are M bits in the mantissa. The program will also test the number of bits used for the characteristic. In this case the program will be interrupted at the occurrence of floating point overflow. If your computer does not support the TRAP (or the equivalent ON ERROR GOTO) command in line 210, then line 270 will never be reached. However, the last value of I printed before overflow occurs is the number of bits in the characteristics; the last value of X is a trifle greater than half the largest possible number for that machine. The largest possible number, when there are N bits in the characteristic and M bits in the mantissa, is $2 \uparrow(2 \uparrow N-1)$ multiplied by a fraction, very nearly unity, whose numerator contains $\mathrm{M}^{\prime} 1$ ' bits and whose denominator contains a ' 1 ' bit followed by M ' 0 ' bits. With a 7-bit characteristic and a 32 -bit mantissa, this is very nearly $1.70141183 \mathrm{E}+38$. The hexadecimal representation may vary slightly among BASIC interpreters due to differences in characteristic biasing and in the way the sign bit is expressed. In Microsoft BASIC, the largest possible number has the hex value
\$FF7FFFFFFF. If your machine lets you alter a number in BASIC's variable table, via monitor or POKEs, you can enter the above value and return to BASIC to print its decimal equivalent.

Extended precision routines in assembly language are perfectly straightforward, rapid and effective; though they tend to get messy for multiplication and especially so for division. Nevertheless, if extensive calculations are required, this method is recommended as being the fastest. It is possible to achieve workable results in BASIC by the procedure given here, in which a large number is broken up and arithmetic operations carried out on the separated parts, with the results combined at the end. If it is necessary for the final result to have greater precision than is available in BASIC, then it will have to be expressed in parts, but this is entirely feasible.

In brief, a large number is expressed as $\left(\mathrm{M}^{*} 10 \uparrow 6+\mathrm{T}^{*} 10 \uparrow 3+\mathrm{U}\right)$, where M is the coefficient of the millions place, T the coefficient of the thousands place, and U the units. Obviously, this scheme can be extended to both larger and smaller numbers by choosing the proper powers of ten as multipliers. In

M M M

```
O
    10
    30
```



```
    PEM NUMEER, THE LIMIT OF PRECTSTON HAS BEEN REACHED:
(1) 50 REM ERROR OCCURS, THE MAXIMUM MAGNITUDE HAS BEEN REACHED.
    100 FOR I=1 TO 10\emptyset
    11| B=2¢I
    12\varnothing A=B-1
-1 130 C=B+1
    140 PRINT I;C-B;B-A;B
    15\emptyset IF C-B<>1 OR B-A<> 1 THEN 17\varnothing
- 160 NEXT I
    170 N=I*LOG(2)/LOG(10)
    18\varnothing N=INT(10*N)/1\varnothing
    19\emptyset PRINT:PRINT I;"BITS IN MANTISSA":PRINT
- 2\emptyset\emptyset PRINT N;"DECTMAL DIGITS OF PRECISION":PRINT
    210 TRAP 27D
    220 FOR I=1 TO 100
    230 N=24I
    24\emptyset X=2\uparrow(N-2)
    250 PRINT I;N-1;X
    26| NEXT I
- 27\varnothing PRINT I-1;"BITS IN CHARACTERISTIC"
    280 END
```

the present case, M, T, and U are not larger than 3 digits each for any number up to $999,999,999$. While this number can be expressed without loss of precision in 9.5 digit BASIC, the product of two such numbers will have 18 digits and 8 or 9 of the least significant digits will be lost. Addition and subtraction are done by parts, with proper attention to carry (if $\mathrm{Ul}=843$ and ' $2=417$, then $\mathrm{U} 1+\mathrm{U} 2=1260$. I.e., the result has $U=260$ and there is a carry of 1 into T\}. Multiplication follows the rule for multiplication of polynomials:
$(\mathrm{M} 1 * 1 \emptyset \uparrow 6+\mathrm{T} 1 * 1 \emptyset \uparrow 3+\mathrm{U} 1) *(\mathrm{M} 2 * 1 \emptyset \uparrow 6+$ $T 2 * 1 \emptyset \uparrow 3+U 2)=M 1 * M 2 * 1 \emptyset \uparrow 12+$ $(M 1 * T 2+M 2 * T 1) * 1 \emptyset \uparrow 9+(M 1 * U 2+M 2-$ $* \mathrm{U} 1+\mathrm{T} 1 * \mathrm{~T} 2) * 1 \emptyset \uparrow 6+(\mathrm{T} 1 * \mathrm{U} 2+\mathrm{T} 2 * \mathrm{U} 1) *$ $1 \emptyset 43+\mathrm{U} 1 * \mathrm{U} 2$

Of course, the powers of ten are not explicitly entered, or you have gained nothing. Rather, the calculations are done on the coefficients, and the partial products carried along. If combining the terms at the end after multiplying by the appropriate powers of ten gives adequate precision, the results can simply be multiplied out and printed in the usual way. But if the extra precision thus gained is wanted in the result, the numbers must be converted using STR\$ and the character strings which result are then concatenated to
give the final result. In order to take account of carry correctly, addition, subtraction and multiplication must proceed from right to left; while division is calculated from left to right.

A practical application of this method is illustrated by the program in Listing 2. Although there are many calendar programs available, this is the only one I know of for calculating the date of the Jewish New Year. The Jewish calendar is a lunar calendar, with months of length alternately 29 and 30 days, so that the first of every month falls within a day or so of a new moon. Twelve such months total only 354 days, about 11.25 less than a solar year. In order to avoid the large errors that would arise from a deficit of 11 days per year, seven leap years of 13 months each are distributed over a 19 year cycle. The difference between 19 solar years and 235 lunar months is only 1.44907 hours. The length of the year may be adjusted by plus or minus one day in order that the New Year will not fall on Sunday, Wednesday or Friday. These small adjustments over the years also compensate for the extra 1.449 hours mentioned above. For further information and for derivation of the method and formulas used see two articles by Louis A. Resnikoff in Scripta Mathematica 9,191-195, 274-277(1943). The only part of the calculation that requires extended
precision arithmetic is evaluation of the following division:
$\left(31524+\left(235^{*} \mathrm{C}+12^{*} \mathrm{~m}+13^{*} \mathrm{n}\right)^{*}\right.$ 765433//181440,
where C is an integer with a value about 300 at the present time, and m and n are small integers. The quotient is not required here, but the remainder points to the day of the week on which the New Year occurs through a table. This division cannot be done without error in 9.5 digit BASIC. It is programmed in lines 2000-2330. Although the quotient is not required, as noted above, it is calculated in the subroutine for illustrative purposes.

The program is written in "standard" BASIC and should run with little or no change on most microcomputers. To use the program, simply enter the common or calendar year in response to the prompting message. The results are printed to the screen in the following form:

ENTER CIVIL YEAR?

1984
CIVIL YEAR $=1984$
JEWISH YEAR $=5745$

NEW YEAR'S DAY IS ON

THU SEP 27

ORDINARY YEAR 354 DAYS

FIRST DAY OF PASSOVER

IS ON APR 61985

The program gives not only the date of the New Year, but also tells whether the year is an ordinary year or a leap year, the exact number of days in the year, and the date of the first day of Passover.

As the accompanying listing illustrates, it is relatively direct to write programs in BASIC that will handle arithmetic calculations with any desired degree of precision, by breaking the problem into smaller parts and doing the calculations for each part separately.

The program gives not only the date of the New Year, but also tells whether the year is an ordinary year or a leap year, the exact number of days in the year, and the date of the first day of Passover.

To construct a calendar for any given year it is necessary to know the arrangement of months in the Jewish year. The transliteration of Hebrew characters is apparently not fully agreed on; I have used a scheme that seems to be widely accepted. In an ordinary year of 354 days the months are as follows: Tishri, 30 days; Heshvan, 29 days; Kislev, 30 days; Tebeth, 29 days; Shebat, 30 days; Adar, 29 days; Nisan, 30 days; Iyar, 29 days; Sivan, 30 days; Tammuz, 29 days; Ab , 30 days; and Elul, 29 days. Some of the important holidays are New Year, Tishri 1; Yom Kippur, Tishri 10; Hanukkah, Kislev 25-Tebeth 2 or 3 (see below on the length of Kislev); and Passover, Nisan 15-21. There are three possible adjustments to this calendar. If the year is a leap year, then a thirteenth month of 29 days called Adar Sheni, or Second Adar, is interpolated between Adar (now First Adar) and Nisan. First Adar is increased to 30 days. If the length of the year is 353 or 383 days (defective year), Kislev is shortened to 29 days. If the length of the year is 355 or 385 days (full year), then Heshvan is increased to 30 days.

For the current year of 1983-84 (Jewish year 5744), the program gives the date of the New Year as September 8,1983 and the length of the year as 385 days (both a leap year and a full year). The correspondence with the civil calendar can be tabulated as follows:

Jewish date	Civil date
Tishri 1, 5744	Sep 8,1983
Heshvan 1	Oct 8
Kislev 1	Nov 7
Tebeth 1	Dec 7
Shebat 1	Jan 5,1984
First Adar 1	Feb 4
Second Adar	Mar 5
Nisan 1	Apr 3
lyar 1	May 3
Sivan 1	Jun 1
Tammuz 1	Jul 1
Ab 1	Jul 30
Elul 1	Aug 29
Tishri 1,5745	Sep 27

As the accompanying listing illustrates, it is relatively direct to write programs in BASIC that will handle arithmetic calculations with any desired degree of precision, by breaking the problem into smaller parts and doing the calculations for each part separately.

```
    10 REM PROGRAM TO CALCULATE DATE OF JEWISH NEW YEAR
    2\emptyset REM METHOD BASED ON NOTES BY L.A.RESNIKOFF
    30 REM "Scripta Mathematica" 9,191-195,274-277(1943).
    40 REM WRITTEN BY Rolf B. Johannesen
    50 REM LAST REVISION 2\emptyset MAR 1984
    60 DIM RC(7,4),RT(6,4)
    65 B$=CHR$(32)
    70 FOR R1=1 TO 4
    8| READ RN
    90 FOR R2= 1 TO RN
    10\ READ RC(R2,R1):NEXT R2
    110 FOR R2 =1 TO 6
    12\emptyset READ RT(R2,R1):NEXT R2:NEXT R1
    130 PRINT "ENTER CIVIL YEAR"
    140 INPUT YR
    150JY=YR+3761
    16\emptyset REM FIND NO. OF 19-YEAR CYCLE
    170 C=INT((JY-1)/19)
    180 REM AND YEAR NO. IN THAT CYCLE
    190 R=JY-19*C
    230 REM SET YEAR TYPE AS ORDINARY
    240 REM CHANGE LATER IF A LEAP YEAR
    250 Y$="ORDINARY":YL=354
    260 FOR K=1 TO 4:FOR J=1 TO 7
    27\emptyset IF R=RC(J,K) THEN 290
    28\emptyset NEXT J : NEXT K
    290 ON K GOTO 400,400,400,300
    30\emptyset REM LEAP YEAR (13 MONTHS)
    310 Y$="LEAP":YL=384
    32\emptyset N=INT((R-1)/3)
    330 GOSUB 2010: GOTO 42D
    4\emptysetD REM ORDINARY YEAR (12 MONTHS)
    410 GOSUB 2000
    420 FOR RR=1 TO 6
    430 IF FR<=RT(RR,K) THEN 500
    4 4 0 ~ N E X T ~ R R ~
    450 IF FR<=174959 THEN YT=1:GOTO 810
    46\emptyset J=9:YT=-1:GOT0 62\emptyset
    500 ON RR GOTO 550,600,650,700,750,800
    55\emptyset YT=-1:GOTO 61\emptyset
    600 YT=1
    610 J=2
    62\emptyset D$="MON":GOTO 1\emptyset\emptyset\emptyset
    650 YT=\emptyset:J=3
    66\emptyset D$="TUE":GOTO 1\emptyset\emptyset\emptyset
    7\emptyset\emptyset YT=-INT(K/4)
    710 GOTO 760
    750 YT=1
    760 J=5:D$="THU"
    770 ज0TO 1000
    800 YT=-1
    810 J=7:D$= "SAT"
10Ø REM NOW WE HAVE DAY OF WEEK
1010 REM NEXT CALCULATE DATE
102\emptysetQ=(-332844+1565*C+282\emptyset84*M-483349*N+FR)/2592\emptyset
1030 IQ=22+INT(YR/1\emptyset\emptyset)-INT(YR/40\emptyset)-INT (Q+\emptyset.75)+J
1040 YL=YL+YT
1050 IF IQ> 30 THEN 1090
1060 M$= "SEP"
107\emptysetDT=IQ
1080 GOTO 1105
1090 M$= "OCT"
1100 DT=IQ-30
1105 GOSUB 3100
1110 PRINT:PRINT:PRINT
112\emptyset PRINT(" CIVIL YEAR = "+STR$(YR))
1130 PRINT:PRINT(" JEWISH YEAR = "+STR$(JY))
1140 PRINT:PRINT" NEW YEAR'S DAY IS ON"
115\emptyset P$=B$+B$+D$+B$+M$+B$+STR$(DT)
1160 PRINT:PRINT P$
1170 PRINT:PRINT(Y$+B$+"YEAR"+B$+B$);
```


Mastering Your VIC-20

 Mastering Your Commodore 64The 8 programs, "run-ready" on disk ($\mathrm{C}-64$) or tape (VIC-20) and explained in the $160-192$ page book, each demonstrate important concepts of BASIC while providing useful, enjoyable software. Programs include:

- Player - compose songs from your keyboard, save, load and edit for perfect music
- MicroCalc - display calculation program that make even complex operations easy
- Master - a one or two person guessing game
- Clock - character graphics for a digital clock

VIC-20 with tape \& book just \$19.95
C-64 with disk \& book (avail. Sept.) just \$19.95

Look for us at the International Software Show Toronto, September 20-23

MICROCaIc for C-64

This on-screen calculator comes with diskette and 48 -page manual offering a wide variety of useful screens, and a great way to learn BASIC expressions if you don't already know them.

- Unlimited calculation length \& complexity
- Screens can be linked and saved on disk/cassette
- Build a library of customized screens
- Provide formatted printer output

Diskette \& 48-page manual
just \$29.95

For the Freshest Books, Buy Direct!

- No prehandled books with bent corners
- Books come direct to your door
- No time wasted searching store to store
- 24 hours from order receipt to shipment
- No shipping/handling charges
- No sales tax (except 5\% MA res.)
- Check, MO, VISA/MC accepted (prepaid only)

Part 1 of this article described the HILISTER program and included the highlighter portion of the assembly listing. This part will include the remainder of the listing and will explain how to interface it to the first part.

If you have an assembler, the source code for the first part should be loaded, then the second part should be added. You may prefer to enter the second part as a separate source file, then append it to the first part. If you do that, you will not be able to assemble it separately, since it is not complete in itself. In either case, UPDO and DOWNDO should be removed from the list of equates, since they are internal labels in the second part of the source. At label LISTER, change the operation code mnemonic from RTS to CLD, so that execution falls through to the
second part of the program. Once the code has been entered and these changes have been made, the code can be assembled and the source and object code saved as HILISTER. The program should now be complete.

If you are entering the code without an assembler, it is best to enter the second part of the code separately. It should then be saved:

BSAVE HILISTER2,A\$80D0,L\$540

In the process of entering the code, it is a good idea to stop every now and then (say every screenful) and save what you have entered to disk, using the same command as shown above. If you now BLOAD HILISTER1 and BLOAD HILISTER2, you will be ready to make the changes necessary to integrate the two sections. Go to the
monitor (CALL -151) and enter 8062.8063, remembering that a carriage return is required after each entry. You should see $8062-58$ FF if the program has been entered correctly Now enter 8062:83 83. Next enter 8087.8088. You should see $8087-58$ FF. Enter 8087:65 83. One more change is needed - enter 80 CF , and you should see 80CF-60. Enter 80CF:D8, and you are finished. Save the program back to your disk:
BSAVE HILISTER,A\$8000,L\$610
You should be able to use the program now by entering BRUN HILISTER

NOTE: In last month's listing of hilister (part I) line 8008 should read
$8 \emptyset 08$ A9 1B LDA BEGIN
line 8010 should read
$8 \emptyset 1 \emptyset$ A9 $8 \emptyset$ LDA BEGIN

O	818C $2 \emptyset \emptyset 384$		JSR SCRNPRT	8216 Dø F7		BNE LSTLOOP
	818F 4 C 9 A 82		JMP GETCMD	8218 C8	LIST9	INY
	8192 C9 9B	ESCCHK	CMP \＃\＄9B	8219 B1 9B		LDA（LOW＇TR），Y
	8194 DØ E4		BNE GETREQ	821B Dø 33		BNE LIST13
	81962058 FC		JSR HOME	821D A8		tay
－	8199 4CD 0.03		JMP BASIC	821E B1 9B		LDA（LOWTR），Y
				8220 AA		TAX
	＊Applesoft list			8221 C8		INY
	＊			8222 B1 9B		LDA（LOWTR），Y
（1）	819060	LRTN	RTS	82248698		STX LOWTR
	819D A2 FF	LISTST	IDX \＃\＄FF	8226859 C		STA LOWTR＋1
	819F $2 \emptyset \mathrm{~B} 19$		JSR CHRGET	8228 D \emptyset AD		BNE LIST4
0	＊			822A A9 ØD	LIST1．	LDA \＃\＄øD
	＊Replacement for Applesoft LIST routine			822 C 20 5C DB		JSR OUTDO
	81 A 290 ¢	LIST	BCC LIST1	＊End	List p	ocessing
O	$81 \mathrm{~A} 4 \mathrm{~F} \mathrm{\emptyset} \emptyset 8$		BEQ LIST1	＊		
	81 A6 C9 C9		CMP \＃\＄C9	822F 208382	ENDLST	JSR PRTSCRN
	$81 \mathrm{~A} 8 \mathrm{FD} ⿹ 勹 厶 ⺝$		BEQ LIST1	8232200384		JSR SCRNPRT
	81AA C9 2C		CMP \＃\＄2C	823520 3A FF		JSR BELL
O	81AC D \emptyset EE		BNE LRTN	8238 Аø $\emptyset \square$		LDY \＃®
	81AE $2 \emptyset \emptyset C$ DA	LIST1	JSR LINGET	823A B9 EC 85	MSGLP1	LDA ENDMSG，Y
	$81 \mathrm{B1} 201 \mathrm{~A}$ D6		JSR FNDLIN	823D FØ Ø6		BEQ LISTEND
0	818420 B7 $\emptyset \emptyset$		JSR CHRGOT	823F $2 \emptyset \mathrm{FD}$ FD		JSR COUT1
	$81 \mathrm{B7} \mathrm{FD} 10$		BEQ LIST3	$8242 \mathrm{C8}$		INY
	81B9 C9 C9		CMP \＃\＄C9	8243 D 0 F5		BNE MSGLP1
	$81 \mathrm{BB} \mathrm{F} \mathrm{\emptyset} \emptyset 4$		BEQ LIST2	82454 C 9 A 82	LISTEND	JMP GETCMD
0	81BD C9 2C		CMP \＃\＄2C	8248 C8	LIST11	INY
	81BF D \emptyset DB		BNE LRTN	8249 D $\emptyset 2$		BNE LIST12
	$81 \mathrm{C1} 2 \emptyset \mathrm{B1} \emptyset \emptyset$	LIST2	JSR CHRGET	824B E6 9E		INC DSCTMP＋1
	810420.0 DA		JSR LINGET	824D B1 9D	LIST12	IDA（DSCTMP），Y
©	$81 \mathrm{C7}$ D \emptyset D3		BNE LRTN	$824 \mathrm{~F} 6 \emptyset$		RTS
	$81 C 968$	LIST3	PLA	825010 AD	LIST13	BPL LIST8
	81 CA 68		PLA	825238		SEC
©	81CB A5 50		LDA LINNOM	8253 E9 7F		SBC \＃\＄7F
	81CD 0551		ORA LINNMM +1	8255 AA		
	81CF D $\emptyset 6$		BNE LIST4	82568485		STY FORPNT
	81D1 A9 FF		LDA \＃\＄FF	8258 AØ DØ		LDY \＃\＄DØ
©	81D3 $855 \emptyset$		STA LINNMM	825A 849 9		STY DSCTMP
	81D5 8551		STA LINNOM＋1	825C AD CF		LDY \＃\＄CF
	$81 \mathrm{D7}$ A $\emptyset 1$	LIST4	LDY \＃\＄®1	825E 849 E		STY DSCTMP +1
O	8109 B1 9B		LDA（LOWTR），Y	$8260 \mathrm{~A} \square^{\text {FF }}$		LDY \＃\＄FF
	81DB FD 4D		BEQ LIST1ø	8262 CA	LIST14	DEX
	81DD 20 D 84		JSR ISCNTC	8263 FD ¢7		BEQ LIST16
	81E＠ $2 \emptyset \mathrm{FB} \mathrm{DA}$		JSR CRDO	8265204882	LIST15	JSR LIST11
웅	81E3 C8		INY	826810 FB		BPL LIST15
	$81 \mathrm{E} 4 \mathrm{B1} 9 \mathrm{~B}$		LDA（LOWTR），Y	826A 30 F6		BMI LIST14
	81 E 6 AA		TAX	826C A9 $2 \emptyset$	LIST16	LDA \＃\＄20
	81E7 C8		INY	826E 20 5C DB		JSR OUTDO
\bigcirc	81 E8 B1 9B		LDA（LOWTR），Y	8271204882	LIST17	JSR LIST11
	81EA C5 51		CMP LINNOM +1	82743005		BMI LIST18
	81EC D $\emptyset \square 4$		BNE LIST5	827620 5C DB		JSR OUTDO
－	81EE E4 50		CPX LINNOM	8279 D F6		BNE LIST17
	81FØ FØ Ø2		BEQ LIST6	827B 20 5C DB	LIST18	JSR OUTDO
	81 F 2 B 06	LIST5	BCS LIST1ø	827 E A9 $2 \emptyset$		LDA \＃\＄2ø
	$81 F 48485$	LIST6	STY FORPNT	8280 4C FB 81		JMP LIST7
0	81F6 2024 ED		JSR LINPRT	＊		
	$81 \mathrm{F9}$ A9 20		IDA \＃\＄20	＊Set	to pri	t last lines of
	81FB A4 85	LIST7	LDY FORPNT	＊list	ng to sc	een
O	81FD 297 F		AND \＃\＄7F		PRTSCRN	JSR PGBAK
	81 FF 205 CDB	LIST8	JSR OUTDO	8286 A5 FC		IDA SCRST
	8202 A5 24		LDA CH	828885 FE		STA LSTEND
	8204 C9 21		CMP \＃\＄21	828A A5 FD		LDA SCRST＋1
0	82069010		BCC LIST9	828 C 85 FF		STA LSTEND＋1
	820820 FB DA		JSR CRDO	828E A9 FØ		IDA \＃＜COUT1
	820日 A9 05		LDA \＃5	82908536		STA CSWL
	820D 851 B		STA COUNT	8292 A9 FD		IDA \＃$>$ COUT1
0	820 F A9 A \emptyset	LSTLOOP	LDA \＃\＄Aø	82948537		STA CSWL＋1
	8211205 CDB		JSR OUTDO	829620 EA 03		JSR TELLDOS
	8214 C6 1B		DEC COUNT	829960		RTS

Save time and aggrevation with a collection of defined functions.

~"ロ $S \rightarrow$ Part 3 by Paul Garrison
(1) 1 REM FUNCTIONS (DELETE THOSE NOT USED IN A PROGRAM)
$2 \mathrm{PI}=3.14159$
$3 \mathrm{RAD}=57.2958$
$4 \operatorname{DEF} \operatorname{FNL}(\mathrm{~A}, \mathrm{~B})=-(\mathrm{A}<=\mathrm{B}) * \mathrm{~A}-(\mathrm{B}<\mathrm{A}){ }^{*} \mathrm{~B}$: REM LESSER OF A AND B
$5 \operatorname{DEF} \operatorname{FNG}(A, B)=-(A>=B) *_{A}-(B>A){ }^{*} B$: REM GREATER OF A AND B
$6 \operatorname{DEF} \operatorname{FNAV}(\mathrm{~A}, \mathrm{~B})=(\mathrm{A}+\mathrm{B}) / 2:$ REM AVERAGE OF A AND B
$7 \operatorname{DEF} \operatorname{FNDX}(\mathrm{~A}, \mathrm{X})=\operatorname{INT}\left(\mathrm{A}^{*} \mathrm{X}+.5\right) / \mathrm{X}$: REM LIMIT TO X DECIMALS
(8 DEF FNPRX (RHO, THETA) $=$ RHO*SIN(THETA/RAD) :REM P TO R, FINDS X
9 DEF FNPRY (RHO, THETA) $=$ RHO*COS (THETA/RAD) : RRM P TO R, FINDS Y
10 DEF $\operatorname{FNRPR}(X, Y)=\operatorname{SQR}(X \dagger 2+Y \dagger 2):$ REM R TO P, FINDS RHO
$11 \operatorname{DEF} \operatorname{FNRPT}(X, Y)=-(X=\emptyset \operatorname{AND} Y<\emptyset) * 18 \emptyset-(X>\emptyset) *(9 \emptyset-\operatorname{RAD} * \operatorname{ATN}(Y / X))-(X<\emptyset) *\left(27 \emptyset-\operatorname{RAD}^{*} \operatorname{ATN}(Y / X)\right)$

- 12 REM R TO P, FINDS THETA

13 DEF FNSSS $(A, B, C)=R A D * 2^{*} A \operatorname{ATN}\left(\operatorname{SQR}\left(((A+B+C) / 2-A)^{*}((A+B+C) / 2-B)^{*}((A+B+C) / 2-C)^{*} 2 /(A+B+C)\right) /((A+B+C) / 2-A)\right)$
14 REM FINDS ANGLE OPPOSITE SIDE A,GIVEN 3 SIDES OF A TRIANGLE
(*) 15 DEF $\operatorname{FNROOT}(\mathrm{X}, \mathrm{Z})=\mathrm{Xt}(1 / \mathrm{Z}):$ REM Z -ROOT OF X
$35 \operatorname{DEF} \operatorname{FNREC}(\mathrm{~A})=1 / \mathrm{A}: \& R E M$ RECIPROCAL OF A
36 DEF FNDEG $(A)=A^{*}(P I / 18 \varnothing)$:REM DEGREES TO RADIANS
37 DEF $\operatorname{FNRAD}(A)=A /(\operatorname{PI} / 18 \emptyset)$: REM RADIANS TO DEGREES

* 38 DEF FNVOLC(S) $=\mathrm{S} \dagger 3$: \%REM VOLUME OF A CUBE

39 DEF FNVOLR $(\mathrm{L}, \mathrm{W}, \mathrm{H})=\mathrm{L}^{*} \mathrm{~W}^{*} \mathrm{H}:$ REM VOLUME OF BOX
40 DEF FNVOLS $(\mathrm{R})=4 / 3^{*}$ PI*R \uparrow 3: REM VOLUNE OF A SPHERE
$0 \quad 41$ DEF $\operatorname{FNVOLP}(\mathrm{B}, \mathrm{H})=\mathrm{B}^{*} \mathrm{H} / 3$: ! REM VOLUME OF A PYRAMID
42 DEF FNVOLL $(R, H)=P I{ }^{*} R \uparrow 2^{*} H: R E M$ VOLUME OF A CYLINDER
43 DEF $\operatorname{FNSURC}(S)=6^{*}\left(S^{*} S\right)$: REM SURFACE OF A CUBE
$44 \operatorname{DEF} \operatorname{FNSURR}(\mathrm{~L}, \mathrm{~W}, \mathrm{H})=2^{*}\left(\mathrm{~L}^{*} W\right)+2^{*}\left(\mathrm{~L}^{*} H\right)+2^{*}\left(W^{*} H\right)$: REM SUBFACE OF A BOX
(35 DEF FNSURS (R) $=4 *$ PI*R $\uparrow 2$: REM SURFACE OF A SPHERE
$46 \operatorname{DEF} \operatorname{FNSURL}(\mathrm{R}, \mathrm{H})=2 * \mathrm{PI}{ }^{*} \mathrm{R} \uparrow 2+2^{*} \mathrm{PI} \mathrm{F}^{*}{ }^{*} \mathrm{H}$:REM SURFACE OF A CYLINDER

```
    1\emptyset\emptyset REM (PROGRAM TITLE, AUTHOR)
- 11\emptyset REM (TYPE OF BASIC USED)
    12\emptyset GOTO 18\emptyset
    130 ?"
                        ":RETURN
* 14\emptyset HOME:VTAB(10):RETURN
    150 ?:INPUT "Press > RETURN< (Q to quit)",R$
```

155 IF R $\$=$ "Q" THEN 160 ELSE RETURN
160 GOSUB 140:GOSUB 130:?TAB(33) "End. ":GOSUB 130:END
180 GOSUB 140:GOTO $2 \not 0 \square \square$
190 REM TESTING FUNCTIONS
200 ?"Find the lesser of two numbers":GOSUB 130
210 INPUT "Enter any two numbers", A, B
22ø $\mathrm{X}=\mathrm{FNL}(\mathrm{A}, \mathrm{B}): \operatorname{GOSUB} 13 \emptyset$
230 PRINT "The lesser number is";X:GOSUB 150:GOTO $20 \emptyset \emptyset$
240 ?"Find the greater of two numbers":GOSUB 130
250 INPUT "Enter any two numbers", A, B
$260 \mathrm{X}=\mathrm{FNG}(\mathrm{A}, \mathrm{B}): \operatorname{GOSUB} 130$
$27 \varnothing$ PRINT "The greater number is",X:GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
280 ?"Find the average of two numbers":GOSUB 130
290 INPUT "Enter any two numbers",A,B
$300 \mathrm{X}=\mathrm{FNAV}(\mathrm{A}, \mathrm{B}): \operatorname{GOSUB} 13 \emptyset$
31ø PRINT "The average of the two numbers is", X:GOSUB 15ø:GOTO $2 \varnothing \emptyset \varnothing$
$32 \emptyset$?"Round number to X decimals":GOSUB $13 \varnothing$
330 INPUT "Enter a number with many decimals", A
$34 \emptyset$ PRINT "Enter $1 \varnothing, 1 \varnothing \emptyset, 1 \emptyset \emptyset \varnothing$ etc. to limit the number of decimals"
345 INPUT "to the number of zeros", LD
$35 \emptyset X=\operatorname{FND}(A, L D): G O S U B 13 \emptyset$
$36 \emptyset$ PRINT "The rounded-off number is ";X:GOSUB 15ø:GOTO 2øØø
$37 \varnothing$?"Polar to rectangular conversion, find X":GOSUB $13 \varnothing$
380 INPUT "Diagonal length (rho) ", RHO
390 INPUT "Angle to vertical line", THETA
$4 \emptyset \emptyset \mathrm{X}=\mathrm{FNPRX}(\mathrm{RHO}, \mathrm{THETA})$: GOSUB 130
410 PRINT "The horizontal length (X) is"; X:GOSUB 15ø:GOTO $2 \emptyset \emptyset$
$42 \emptyset$?"Polar to rectangular conversion, find Y":COSUB $13 \emptyset$
430 INPUT "Diagonal length (rho)", RHO
440 INPUT "Angle to vertical line (theta)", THETA
$450 \mathrm{X}=\mathrm{FNPRY}$ (RHO, THETA) :GOSUB $13 \emptyset$
$46 \emptyset$ PRINT "The vertical length (Y) is";X:GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
470 ? "Rectangular to polar conversion, find hypotenuse (rho)":GOSUB 130
$48 \emptyset$ INPUT "Horizontal length (X) ", X
490 INPUT "Vertical length (Y)", Y
$5 \emptyset \emptyset X X=\operatorname{FNRPR}(X, Y): G O S U B 13 \emptyset$
510 PRINT "The hypotenuse (rho) is";XX:GOSUB 150:GOTO $2 \emptyset \emptyset \emptyset$
$52 \emptyset$? "Rectangular to polar conversion, find angle (theta)":GOSUB $13 \emptyset$
530 INPUT "Horizontal length (X) ", X
540 INPUT "Vertical length (Y) $", Y$
$55 \emptyset \mathrm{XX}=\mathrm{FNRPT}(\mathrm{X}, \mathrm{Y}): G O S U B 13 \varnothing$
$56 \emptyset$ PRINT "The angle (theta) is";XX:GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
$57 \emptyset$?"Find the angle opposite side X using 3 sides of a triangle":GOSUB $13 \emptyset$
$58 \emptyset$ INPUT "Horizontal length (X) ", A
$59 \emptyset$ INPUT "Vertical length (Y) ", B
$6 \emptyset$ INPUT "Diagonal length (hypotenuse)", C
$61 \emptyset \mathrm{X}=\mathrm{FNSSS}(\mathrm{A}, \mathrm{B}, \mathrm{C})$: GOSUB $13 \emptyset$
$62 \emptyset$ PRINT "The angle opposite X is"; $X: Y=9 \varnothing-X$
630 PRINT "The angle opposite Y is";Y:GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
640 ? "Find the X root of a number":GOSUB 130
650 INPUT "Enter any number", X
660 INPUT "Enter root number", R
$67 \emptyset \mathrm{XX}=\mathrm{FNROOT}(\mathrm{X}, \mathrm{R}): \operatorname{GOSUB} 13 \emptyset$
680 PRINT "The ";R;" root of ";X;" is";XX:GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
1450 ?"Find the reciprocal of a number":GOSUB 130
1460 INPUT "Enter any number", A
$1470 \mathrm{X}=\mathrm{FNREC}(\mathrm{A}): \operatorname{GOSUB} 13 \varnothing$
1480 PRINT "The reciprocal of ";A;" is";X:GOSUB 150:GOTO 200
$149 \emptyset$?"Convert degrees to radians":GOSUB $13 \emptyset$
1500 INPUT "Enter number of degrees", A
$1510 \mathrm{X}=\mathrm{FNDEG}(\mathrm{A}): \operatorname{GOSUB} 13 \emptyset$
$152 \emptyset$ PRINT A;" degrees equal "; X;" radians":GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset ~$
1530 ?"Convert radians to degrees":GOSUB $13 \emptyset$
1540 INPUT "Enter number of radians", A
$1550 \mathrm{X}=\mathrm{FNRAD}(\mathrm{A}): \operatorname{GOSJB} 130$
$156 \emptyset$?A;" radians equal ";X;" degrees":GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
1570 ?"Find the volume of a cube":COSUB 130
$158 \emptyset$ INPUT "Enter length of one side", A
$1590 \mathrm{X}=\mathrm{FNVOLC}(\mathrm{A}): \operatorname{GOSUB} 13 \emptyset$
$16 \emptyset$ PRINT "The volume of the cube is ";X;" cubic measures":GOSUB 15Ø:GOTO $2 \emptyset \emptyset \emptyset$
$161 \emptyset$?"Find the volume of a rectangular box":GOSUB $13 \varnothing$
(162Ø INPUT "Enter width of box", W
1630 INPUT "Enter length of box",L
$164 \emptyset$ INPUT "Enter depth of box",H
$165 \emptyset$ X=FNOLR(W,L,H):GOSUB 130
(1) 1660 ?"The volume of the box is ";X;" cubic measures":GOSUB 150:GOTO $2 \emptyset \emptyset 0$

1670 ?"Find the volume of a sphere":GOSUB 130
$168 \emptyset$ INPUT "Enter the radius", R
1690 X=FNVOLS(R): GOSUB 130
17øø ?"The volume of the sphere is ";X;" cubic measures":GOSUB 15ø:GOTO 2øøø
$171 \emptyset$?"Find the volume of a pyramid":GOSUB $13 \emptyset$
$172 \emptyset$ INPUT "Enter base area in square measures",B

- 1730 INPUT "Enter height of the pyramid", H

174ø X=FNVOLP $(B, H): G O S U B 13 \emptyset$
$175 \emptyset$?"The volume of the pyramid is ";X;" cubic measures":GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$
1760 ?"Find the volume of a cylinder":GOSUB $13 \emptyset$

- 1770 INPUT "Enter radius", R
$178 \emptyset$ INPUT "Enter length of the cylinder", H
$1790 \mathrm{X}=\mathrm{FNNOLL}(\mathrm{R}, \mathrm{H}):$ GOSUB $13 \emptyset$
(1) $18 \emptyset \emptyset$?"The volume of the cylinder is "; X ;" cubic measures":GOSUB 15ø:GOTO $2 \emptyset \emptyset \emptyset$

181ø ?"Find the surface area of a cube":GOSUB 130
1820 INPUT "Enter length of one side", S
1830 X=FNSURC(S):GOSUB 130
O 184Ø ?"The surface area of the cube is ";X;" square measures":GOSUB 15Ø:GOTO 2øøø 1850 ?"Find the surface area of a rectangular box":GOSUB 130
$186 \emptyset$ INPUT "Enter the width of the box",W
$187 \emptyset$ INPUT "Enter the length of the box",L
1880 INPUT "Enter the depth of the box", H
$189 \varnothing$ X $=$ FNSURR $(W, L, H): G O S U B 13 \emptyset$
$19 \emptyset \emptyset$?"The surface area of the box is ";X;" square measures":GOSUB 15ø:GOTO $2 \emptyset \emptyset$
(1910 ? "Find the surface area of a sphere":GOSUB $13 \emptyset$
$192 \emptyset$ INPUT "Enter the radius", R
1930 X=FNSURS (R): GOSUB 130
$194 \emptyset$?"The surface area of the sphere is ";X;" square measures":GOSUB 150:GOTO $2 \emptyset \emptyset \emptyset$
© 1950 ? "Find the surface area of a cylinder":GOSUB 130
1960 INPUT "Enter the radius", R
$197 \emptyset$ INPUT "Enter the length of the cylinder", H
$198 \emptyset \mathrm{X}=\mathrm{FNSURL}(\mathrm{R}, \mathrm{H}): \operatorname{GOSUB} 130$
1990 ?"The surface area of the cylinder is ";X;" square measures":GOSUB 150:GOTO $2 \emptyset \emptyset \emptyset$
$2 \emptyset \emptyset \emptyset$ GOSUB 14ø:?"Menu:":GOSUB 13Ø
$2 \emptyset 1 \emptyset$? 1 , "Lesser of two numbers"

- $2 \emptyset 2 \emptyset ? 2$, "Greater of two numbers"

2030 ?3, "Average of two numbers"
$2 \emptyset 40$:4, "Limit number of decimals"
2050 ?5,"Polar to rectangular, find horizontal length"
(1) $2 \emptyset 6 \emptyset ? 6$, "Poiar to rectangular, find vertical length"
$2 \emptyset 7 \emptyset$?7, "Rectangular to polar, find diagonal length"
$2 \emptyset 8 \emptyset$?8, "Rectangular to polar, find angle"

- $2 \emptyset 85$?9, "Angles opposite two sides"
$2 \emptyset 9 \emptyset$? $1 \emptyset$, "Root of a number"
2100 ? 11 , "Reciprocal numbers"
2110 ?12, "Convert degrees to radians":GOSUB 130
- 2111 ?"To choose one of the above, press > RETURN<"

2112 INPUT "To see other choices, press > Y < ", Z\$
2113 IF $\mathrm{Z} \$=$ "Y" THEN 212ø ELSE GOSUB 130:GOTO 2230
$212 \emptyset$ GOSUB 140:?13, "Convert radians to degrees"
(2130 ? 14 , "Volume of a cube"
2140 ? 15 , "Volume of a rectangular box"
2150 ? 16, "Volume of a sphere"

- 2160 ?17, "Volume of a pyramid"

2170 ?18, "Volume of a cylinder"
$218 \emptyset$?19, "Surface area of a cube"
$219 \emptyset$?2 2 , "Surface area of a rectangular box"
O 2200 ? 21, "Surface area of a sphere"
2210 ?22, "Surface area of a cylinder":GOSUB $13 \varnothing$
$222 \emptyset$?23, "Exit program":GOSUB $13 \emptyset$
2230 INPUT "Which?",WHICH:GOSUB 140
(1) 2240 ON WHICH GOTO $2 \emptyset \emptyset, 240,28 \emptyset, 32 \emptyset, 37 \emptyset, 42 \emptyset, 470,52 \emptyset, 57 \emptyset, 64 \emptyset, 1450,1490,1530,157 \emptyset$, $1610,167 \emptyset, 171 \emptyset, 176 \emptyset, 181 \emptyset, 185 \emptyset, 191 \emptyset, 1950,16 \emptyset$

AICRO

Spread Sheels a Dala Communicalions

○ ○

by John Steiner

This month we will take a look at a newly released spread sheet program and also look at data communications for the Color Computer. Both of these applications are very popular among CoCo users, and they probably constitute most of my time on the computer.

Spread Sheets

One of the most popular classes of software for the microcomputer is the spread sheet. These useful programs have sold more microcomputers than any other type of software because of their versatility and usefulness. The CoCo user was not to be left out.

The first program available was Spectaculator by Radio Shack, which has many of the features of a spread sheet, but is missing quite a few of the more useful ones. C.C. Calc came along, and the first true CoCo spread sheet was available. The program, written in BASIC, has a relatively small sheet size and slow calculation speed, but many of the unique spread sheet features are there. Elite Calc was introduced at the April ' 83 Rainbowfest, and became the CoCo users first full fledged machine language spread sheet program. Though Elite Calc has its flaws, until recently it has been the only full sized spread sheet available for standard CoCo's. (Flex users have Dynacalc available. Though I have never seen it operate, the ads convey that it is indeed a full power spread sheet program.) [Editor's Note: We use Dynacalc all of the time at MICRO for a very wide range of functions. It works very well.]

VIP Calc

Softlaw, Inc. (Formerly Nelson Software Systems) has finally released VIP Calc. It's been a long wait (I remember asking for it at their booth at the April ' 83 Rainbowfest|, but it was worth it. The powerful program is modeled after the granddaddy of all spread sheet programs, Visicalc. CoCo users who also have access to Visicalc on other systems will have no trouble becoming accustomed to VIP Calc.

There are improvements upon the original Visicalc, including sorting and setting individual column widths. Minor modifications have been made to take advantage of the particular hardware and keyboard features of the CoCo, however, so there are some differences in the command structure from the original Visicalc. Up to 16 display windows can be set to compare information. A bank switching technique allows up to 33 K of spread sheet in a 64 K computer. Up to fifteen digit precision can be selected, and trig functions have been included. One of the most useful features is a LOCATE command that can search a sheet for a specified formula or text entry.

A unique marketing strategy by Softlaw has eliminated the tape to disk version upgrade problem. VIP Calc, and many of their other programs include both tape and disk versions of the software. The "Combo' packaging is a nice feature.

VIP Calc's screen display is high resolution and the user can select between $32,51,64$ or 85 characters per line. This makes for the largest Calc screen display for the
CoCo yet. The nice display comes at a price, though. Choosing a high resolution display causes the loss of about eight thousand bytes of available spread sheet memory. In addition, it slows down the program because of the length of time it takes to write the screen display. An 8 K display will take a lot longer to write than the standard 512 byte CoCo screen.

In fact, speed (or lack of it) is probably VIP Calc's major deficiency. After using Elite Calc, which is very fast in calculation and display, VIP Calc seems to move like a turtle. It is helpful to turn off the automatic calculation mode when you are doing data entry, then use the ! command to recalculate after the data are entered. If you choose the 32 character screen display, you will find that screen display update is much faster, as well. However, the speed problem is a relative thing and, if I had not run other spread sheet programs, I probably never would have made any comments about it. You get used to it.

One of the slowest spread sheet programs I have ever seen is MicroPro's Calc Star, which can take upwards of 45 seconds to recalculate a medium size sheet. I use Calc Star for much of my business work, however, and find that the recalculation time is not of any real significance. The other advantages of using Calc Star outweigh the speed problem. VIP Calc is nowhere near that slow in calculating and displaying data, and it is a lot more powerful. I may end up changing to VIP for my company work.

One other disadvantage of VIP Calc for 32 K only users is that some features were left out to conserve memory. Locate, Edit and the high resolution graphics screens are not available to 32 K systems. This should give you enough incentive to make the jump to modify your system to 64 K . VIP Calc will not run in a 16 K computer.

I really enjoy using a spread sheet program for creation of numeric and even text data files. So many things can be done easily on a spread sheet that would take hours of programming time if you were to try to write a BASIC program to do the same thing. If you haven't had the opportunity to look into what a spread sheet can do for you, check it out. You might find that it can be a help in your daily work. For more details, and a simple program to introduce you to spread sheets, check out issue number 67
of Micro, December 1983. That issue was devoted to the spread sheet, and includes "MicroCalc", a spread sheet program for the CoCo.

CoCo Communications

The Color Computer makes a great Videotex terminal, as many people have already found out. Terminal software is inexpensive, and Modems are becoming much more reasonable in price. Two useful, yet inexpensive Modems that work well with the CoCo are the Mura MM-100, and the Anchor Automation Volksmodem. The Mura retails for $\$ 99.95$, while the Volksmodem retails for $\$ 79.95$. I have seen them both advertised for less in mail order ads.

The biggest problem is in configuring a cable that works with them. The CoCo has only four of the 25 standard RS- 232 lines. The Mura modem has a 25 pin standard connector, while the Volksmodem has a five pin DIN connector.

When connecting these, or any modem for that matter, there are really only four required lines for an RS-232 port. They are TXD (transmit data), RCD (received data), GND (ground), and CD (carrier detect). The CoCo RS-232 port contains all these lines and, to work with any modem, they must be connected properly to the same lines on the modem connector.

One concept that has caused confusion in the past is the connection of RCD and TXD. Many people would make the assumption that RCD on the modem should be connected to RCD on the computer, and TXD would be connected likewise.

The connections won't work that way, however, since modems are usually wired as data sets, and computers are wired as data terminals. The difference this causes makes sense, though, so connection is made by putting the RCD line on the modem to the TXD line on the terminal. Similarly, the TXD line on the modem goes to the RCD line on the terminal. All other lines connect directly from the modem to the terminal.

Computer communications is an interesting aspect of the microcomputing hobby, and is becoming more and more useful in the world of business. The Dakota Database Bulletin Board System that I have been running since July of 1983 is still going strong, and over 3700 calls have been made to the system since it has been on line.

Last month we added an upgraded software package, and the BBS is more sophisticated in its message handling, uploading and downloading of programs and files, and general system operation. If you have a modem package, give the Dakota Database a call at 701-281-0233. It is online 24 hours a day, except for occasional periods of updating, and contains several Color Computer programs that you may download at no charge. I'll be looking for your message on the BBS.

And, farewell. MICRO has decided to discontinue microcomputer specific columns in favor of topic specific columns, so this is the last time CoCo Bits will appear. I wish to thank all of you who have responded to this column for your comments, advice and general support. You may see me again soon in MICRO with a column on Telecommunications.

ACRO

by Loren Wright

Report on TPUG Conference

A lot happened at the 3rd Annual Toronto PET Users Group Conference. Brad Templeton, author of the utility package POWER and the assembler PAL, demonstrated a program development system that won't let the user make a programming mistake. For instance, in Pascal if you decide to write a PROCEDURE, the system will automatically provide the ENDPROC statement and prompt you for variable declarations, parameter lists, and such. Jim Strasma, Editor of The Midnight Gazette and Contributing Editor for MICRO, spoke on what to look for, and what to avoid, in commercial software. He emphasized selecting where you buy a product and evaluating product warranties.

Featured at the Saturday night banquet were VIC-based "Randy" robots, "Uses for a Dead Computer" by Transactor Editor Karl Hildon, and reminisces from TPUC founders Jim Butterfield and Lyman Duggan.

What About the 264?

Jim Butterfield and Jim Strasma had a lively discussion on the merits of Commodore's newly announced 264 Computer. As if on cue, someone showed up with a 264 - straight from Commodore Canada. Butterfield soon had it hooked up and running. Surprisingly, the 264 is even smaller than the C-64. It has arrow-shaped cursor control keys arranged in a diamond pattern. There are three differences obvious just from the power-up message. First, there are over 60 K bytes available for BASIC. Second, the BASIC is version 3.5. Third, a message appeared that said: "SUPERSCRIPT on key l". When Jim pressed function key 1 , the word processor appeared instantly - a demonstration of the 264's built-in software capability. Another function key read and displayed the disk directory. The eight function keys can each be assigned with a simple statement.

The 264 uses a processor called the 1701. Contrary to what I said in a previous column, this is a member of the 6502 family and uses the same mnemonics. It still has only a 64 K address space, but due to a more sophisticated architecture, is able to keep most of its operating system 'floating."

The BASIC is more powerful, including convenient disk commands, graphics and sound statements (instead of POKEs], and structured programming statements. There is also a built-in, extended, machine-language monitor, and - first time for Commodore since the KIM - a reset button!

On the minus side, there is no numeric keypad, cassette capability is gone, the sound is primitive (compared to the C-64), and there are no sprites. There should be 80 columns for a "productivity" machine. There are 16 different colors in 8 different luminances.

Commodore's emphasis in marketing the 264 will be "productivity," and, it's true, this machine is a lot easier to operate. My work would definitely go faster. Having a structuring capability available on power-up is a real treat. Also, the built-in extended monitor and reset button can relieve a lot of frustration in assembly language program development.

Despite all the productivity-oriented features, the actual hardware is a little disappointing. This machine seems to be aimed somewhere in between the IBM/IBM Clone market and the low-end market. Butterfield, going along with the productivity emphasis, thinks there's a place for the 264, but Strasma thinks it may be a case of "too little, too late". Due to its limitations in graphics and sound, there may not be much recreational software for it. I suspect the C-64 will still be alive and well a year from now. It appears that the 264 will really be introduced, but certainly not while the C-64 is doing so well. It doesn't really compare with the C-64, but will people be able to tell? The pricing is still uncertain (\$500?), and there may be some changes before it comes out. A numeric keypad and 80 -column word processing would sure help productivity!

COMAL for the Commodore 64

1 recently purchased a COMAL disk from the COMAL Users Group and did a little playing with the graphics commands. I had reviewed a previous version of COMAL for the PET and saw some promise there. It is a structured language, yet without the picky syntax requirements of Pascal. It has most BASIC commands, as well as REPEAT...UNTIL, WHILE...ENDWHILE, FOR...NEXT, IF...THEN...ELSE..ELIF...ENDIF, and a good CASE structure. Likc BASIC, it is easy to program because you don't have to deal with an editor, compiler, and P-code interpreter to get your program to run. All you have to do is edit the program and RUN it. This is particularly important in a learning situation. There were problems with the PET version I saw, such as a "split" interpreter, and a few minor bugs. Also, since the PET had its ROMs hard-wired in, COMAL had to be loaded on top of BASIC, taking up most of the valuable RAM. When I began seeing ads for the C-64 version, my interest was rekindled. I knew the architecture of the C-64 would be better suited to a COMAL implementation.

COMAL has been around for quite a while, but it has received little attention in the U.S. In Europe it has a strong following. It is the official teaching language in Denmark, Ireland, Sweden, and Norway, and will be soon in other countries. It was designed by Borge Christensen as a combination of the "best of Pascal and BASIC." The C-64 version boasts a built-in turtle graphics system, so its promoters now add Logo to their "best of" list.

COMAL works much the same as BASIC, in that you can execute commands in the immediate mode, and you can test each procedure or function as you write it. However, it actually is a little more complicated. The system makes three passes through a program. Syntax errors are detected as you enter each line. Then, when you RUN the program, two more passes are made. It sounds complicated and time consuming, but overall COMAL averages out to about three times faster than BASIC. For string manipulations, COMAL is much faster than that. The string functions are simpler, but more powerful, than those of Microsoft BASIC. For instance, you can assign a substring - not allowed in BASIC.

The graphics commands are very convenient and they work on either hi-res or multicolor bit-map screens. There is very little required to set up a bit map screen since the system is designed to operate in bank 3, the $\$$ C000 block
and the RAM under the I/O area and Kernal ROMs. All the memory manipulation is taken care of automatically. There's also a whole set of sprite commands, but these are designed to work with a bit map screen. I was able to get a few sprites to work in bank 0 with ROM characters. There doesn't seem to be any easy way to use programmed characters, although it is possible. Part of the problem is that there isn't any published memory map or other documentation of COMAL's inner workings, although these are in the works. Another problem is that there is less memory available for machine language programs. One promising feature is that position-independent routines can be programmed as strings, a technique popular with advanced Atari programmers.

At the TPUG Conference, I met Len Lindsay, who runs COMAL Users Group, U.S.A., Ltd. 15501 Groveland Terrace, Madison, WI 53716). The users group owns the copyright to the disk version and distributes copies for $\$ 19.95$. He does allow individuals to freely copy the system disk, as long as they don't make any changes and don't make any money off it. Even large users groups may distribute copies, but they must check first with Len. Len is the major proponent of COMAL in the US, and he has been with it since nearly the beginning. He was founder of The PET Gazette (the most successful of several newsletters and magazines that were combined to form COMPUTE! , and is working to get COMAL established as a major force in the U.S. With a little help from enthusiastic users and a computer company or two, COMAL will take over even faster

Support for COMAL is growing. The COMAL Users Group publishes a regular newletter called COMAL Today [\$15/year], and an applications tutorial book series Captain COMAL ($\$ 19.95$ with disk for each book). In addition, there is a reference book, the COMAL Handbook by Len Lindsay ($\$ 18.95$), and a number of books from European publishers. All of these, including the European books, are available from the COMAL Users Group, and many are available in computer and book stores.

A Better COMAL - How long will Commodore sit on it?

There is a better COMAL, but it is not available. Commodore owns it, and is taking its time with producing it. The disk-based COMAL reviewed above only leaves you with 10K free for your program (equivalent to 16 K in BASIC terms). The new, cartridge-based COMAL will leave over 30 K free, as well as add many new features and commands. One feature I have heard described is a multilevel error-trapping system. Although I don't know for sure, there should be a little more flexibility added to graphics programming. Len Lindsay, and a few others, have seen this new version, and are very impressed.

Like other companies, Commodore has limited manufacturing facilities, and the ROM burners required to make cartridges are particularly in demand for things like hot-selling games. For Commodore, it's a matter of juggling priorities and demands. Look for the COMAL cartridge in late summer or fall. In the meantime, you can buy the disk version, and learn all about the language. It will take a while to exhaust the 10 K limit. Then keep up the pressure on dealers, so they can keep pressure on Commodore. It might work!

Subscribe to MICRO... Save 20% and we'll send you a BONUS GIFT with your subscription!

Receive a coupon good for one MicroDisk of your choice. A \$15.00 Value - FREE!

Each Disk contains a variety of programs from Micro, all entered and ready to run on your machine. Saves time, avoids errors. This offer expires October 31, 1984

Fill out the attached card and mail today!

Each diskette includes all of the programs in BASIC and/or Assembly Source, plus binary 'load-and-go' files. The price of only $\$ 15.00$ includes shipping and handling.

SAVE 20% !

Use This Postage-Paid Card To Subscribe... Or Call 617/256-3649

Expires Oct. 31, 1984
(MasterCard and VISA Accepted)

IAICRO
\square YES! Enter my subscription to MICRO for just $\$ 24.00$ per year and send me a BONUS GIFT COUPON for one free MicroDisk.

Renew my subscription to MICRO for just $\$ 24.00$ and send me a BONUS GIFT COUPON for one free MicroDisk.

My mailing label number is MC

	I'm paying by:	$\begin{aligned} & \text { ECheck }=\mathrm{MO} \\ & \text { IVISA -MC } \end{aligned}$
Name	Total Enclosed:\$	
Address		
City ___ State______ Zip____	Visa/MC \#	
(Allow 6.8 weeks for delivery) Bonus Coupon offer expires Oct. 31, 1984	Exp. Date:	

/ACRO's Newest Software

MicroDisks

Send me the following MicroDisks at $\$ 15.00$ each prepaid
\square MD-1 Master Disk Directory
\square MD-2 Does'lt Monitor
\square MD-3 Accurate Printer
\square MD-4 Graphic Printer Dump
\square MD-5 COMPRESS

MicroCalc

The Full Screen Calculator

Easier than spreadsheet programs, does calculations of unlimited length and complexity on screen, links screens, saves on disk or tape, provides formatted printer output. Contains a 48 page manual and diskette.
\square MicroCalc for Commodore 64............. $\$ 29.95$
\square MicroCalc for Apple II/Ie/llc................ $\$ 29.95$
\square MicroCaic for Atari............................. $\$ 29.95$

Please rush the Micro Software checked above to:

Name
Address
City \qquad State \qquad Zip

MA residents add 5% sales tax.

I'm paying by: \square Check \square MO \square VISA $\sqsubset M C$
Total Enclosed: \$ \qquad

Visa/MC \#
Exp. Date:

We Pay All Shipping and Handling

Mastering Your Atari

 Through Eight BASIC Projects Eight stimulating major projects on diskette - ready to entertain and educate you. Includes: Atari Player, Clock, MicroCalc, Word Detective, Fully described in 192 page book - the fun way to learn! \square Mastering Your Atari\$19.95
What's Where

in the Apple
Revised new edition with Apple lle information added to original atlas and gazetter. All Apple users will find this book helpful in understanding their machine and essential for mastering it.
\square What's Where in the Apple 272 pages only $\$ 19.95$

Best Sellers for

 APPLE Users!
MICRO on the APPLE

Programming aids, utilities. games, enhancements. Together Volumes 1. 2, and 3 contain over 100 programs on diskette. Fully documented and explained
[. 3-Volume Gift-Boxed @ $\$ 59.95$ ■ Vol.2■ Vol. $3 \$ 24.95 \mathrm{ea}$.

Please rush the MICRO Books l've checked above to:
Name \qquad
Address \qquad
ity State \qquad Zip \qquad MA residents add 5% sales tax.

I'm paying by: ㄷ.Check ■MO
Total Enclosed: \$ \qquad

Visa/MC \# \qquad
Exp. Date:

Use This Postage Paid Card to Order the Next 12 Issues of MICRO and SAVI $\$ 6.00 \mathrm{Off}$ Newsstand Price!

A Feast 0

 Computin Ideas... New Book From AICRO
BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 60, CHELMSFORD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

P.O. Box 6502

Chelmsford, MA 01824

Order Thes

Best Sellers

From AICRO

A
 Major
 Hardware Interface

by Ralph Tenney

Last time we began looking at the problem of connecting my 32 K CoCo as a printer buffer for the 64 K CoCo and my Commodore 64. A sketchy outline of the planned system was shown, and a simple RS-232 interface between a CoCo and the C-64 was shown. This month, let's do some detail designing of the major hardware interface - the receiver board for the 32 K CoCo .

The most often overlooked item in hardware or software is a complete design specification. If you omit the spec while working for another person or company, two problems can arise. First, you may overlook a feature you verbally agreed to, and need a expensive re-design (at your expense). Second, the customer can say, 'But I told you I wanted another printer port," or something similar. With an agreed-to and signed design specification, you have the opportunity to charge extra for changes made after the spec is signed off. In working for yourself, (always after a long day at work $/$, it's easy to overlook something. If you have your own spec to work against, you can trade off bells and whistles against your own time and pocketbook if you decide to make a change. The point is that the project is under some control and won't "grow like Topsy" unless you decide to let it. Besides the other advantages, the design spec is an good start on the documentation you must have!

Multi-Port COCO Interface

I. Minimum Interface Capability

A. Centronics Compatible Parallel Ports

1. Port \#1 must have a female Centronics style connector with pinout conforming to that of Figure 1. This port is an input and must accept a negative-going strobe pulse .5 uSec . wide (minimum) as a "data ready" signal and return a similar "acknowledge" pulse when ready to accept another data byte. An active-high "Busy" signal shall be provided in addition to the "data ready" and "acknowledge" signals. This port may be implemented as a cable terminating in the requisite connector.
2. Port \#2 shall be output only, using a connector which can mate with the connector of Port \#1. The pinout shall conform to that of Figure 1. This port must issue a negative-going "data ready" signal .5 uSec . (minimum)

Figure 1. Pinout of Centronix-style parallel input plug.
wide and recognize a similar "acknowledge" pulse. The port shall also monitor a "printer busy" input and hold off further output until "busy" has gone inactive. This port must be implemented with cable of $15^{\prime \prime}$ minimum length.
B. RS-232 Serial Ports

1. Port \#3 shall be an RS-232 input with selectable baud rates of 600,1200 and 2400 . An output line shall be provided for, with pinout to match the Radio Shack Color Computer serial port as implemented by the 1.1 BASIC ROM. A 'busy"' signal shall be returned on the fourth wire of the cable.
2. Port \#4 shall be an RS- 232 output only, with selectable baud rates of 600,1200 and 2400 . This channel shall have a unique output connector and be responsive to a 'busy"' input. The data normally assigned to the channel shall be capable of being diverted to the output of Port \#3.

II. Physical and Electrical Considerations

A. The interface card shall be physically compatible with the cartridge expansion port of the Radio Shack Color Computer and shall have external support provided for the end of the card opposite the connector. Cables used as input and output adapters shall be removable by plugging onto single- or double-row header strips.
B. The ports shall be based in the CoCo expansion I/O area between $\$ F F 40$ and $\$ F F 7 F$ and the controlling software must auto-start and be based at $\$ 8000$. A separate specification will define the functions of this software.
C. The two parallel ports shall be built with a 6522 VIA, plus a separate latch to generate the local "busy" signal and input logic to monitor the remote "busy" signal. A 6850 ACIA will be used for both ports with switch logic to divert the output channel as needed. An acceptable alternative is to create two full duplex channels with two ACIAs.

Implementation of the Interface

Let's study the CoCo expansion port to see what we have to work with. Table 1 gives the pinout of this 40 pin connector. The application of most of the signals is obvious, but there are a few signals unique to the 6809/6883 architecture of the Color Computer. " E " is the

What better place to start than MICRO, if you like:

- a fast turnaround on manuscript submissions
- being treated like a professional
- prompt payment at competitive rates
- national and international exposure (we have readers from Austria to Australia)
- being part of a magazine that is well established... 7 years and going strong

Don't wait -- send for your Writer's Guide today.

Send a S.A.S.E. to:
Mike Rowe
Micro Ink
P.O. Box 6502

Chelmsford, MA 01824

ATTENTION COMMODORE 64 OWNERS: "Is THE CLONE MACHINE really dead?"

Yes. there comes a time when a product grows old and isn't the latest state of the art. Thank goodness we understand that here at Micro-W. Our all new version (known as SUPER CLONE) will surely prove that we are still number one in the back-up business You'll still get the old reliable Clone Machine but weve added the following 1) A fast clone copy (approx 14 minutes) that's simple to use 2) A Super Unguard utilitity that quickly handles errors 20 thru 29 (and you don't even have to disassemble your drive like some of our competitors suggest)
3) A new unque way to back-up formerly uncopyable software
Don't worry if you are a registered owner of our earlier version. we've got you on file and this upgrade will only cost you $\$ 10$ pius shipping and handling. Dealers. call us for stock baiancing on old merchandise

Available from
Farnal
DISTRIBUTING. INC
Butler. N.J. 07405
CALL: (201) 838-9027 To Order
Dealer and Distrbutor inquiries Invited.
保

primary clock signal for the friol and Q in simalar w the Thase 2650) clock, except that it is a quadrature chock which gives extonded aming margins for intertatome CTS* is the main SELECT signal tor the cartridge pone
 secondary SELECT strohe active hetween SFFti and $\$ F F C O$ and is intonded to select $I^{\prime}(0)$ derices SLENB is furnished to entirely disable the internal decoding, which allows plug-ins such as the $\mathrm{Z}-80 \mathrm{mod}$ me which rum C.PM software. HALT* stope the 6809 and CART is the line which allows game cartridges to autu-start. A second auto-start mechanism is available under Extended BASIC - if the hytes at $\$ \mathrm{COOO}$ and $\$ \mathrm{COOl}$ are "IOK' control is handed over to the cartridge.! It is important to note that none of the processor address or datal lince are buffered. The E and Q lines are generated by the hipolar 688.3 and the two SELECT lines are generated by a low power Schottky IC. So, after choosing which IC is neceled in the interface, we will need to examine the bus loading to be sure that the interface will not oferload the computer

TABLE 1 - CoCo Expansion Port

Pin	Function	Pin	Function
1	-12 Volts	21	Address A2
2	+12 Volts	22	Address A 3
3	HALT*	23	Address A4
4	NMI ${ }^{*}$	24	Address A5
5	RESET*	25	Address A6
6	E (clock)	26	Address A7
7	Q (clock)	27	Address A8
8	CART	28	Address A 0
9	+5 Volts	29	Address Alo
10	Data DO	30	Address All
11	Data Dl	31	Address A] 2
12	Data D2	32	CTS* (SELECT 1!
13	Data D3	33	Ground
14	Data D4	34	Ground
15	Data D5	35	Sound input
16	Data D6	36	SCS* ${ }^{\text {SELECT } 21}$
17	Data D7	37	Address A13
18	R/W*	38	Address Alt
19	Address A0	39	Address Alt
20	Address Al	4)	SLENB*

The interface hoard needs the following capability an addition to the specified $/$ O ports

1. A clock somere we generate the clack freymation meded for the three specified band rates
2. Decoding for the VIA, one or two ACIAs and ar keast one lateh

The ACIA (Asynchronous Communications Interface Adapter) uses onc of two clock frequencies: 16 x the baud rate (/ 16 mode) and 64 x the baud rate (/64 mode). If you accept the software overhead required to change the ACIA divide ratio, the ACIA can be operated in both / 16 and / 64 modes with two input frequencies and gain one additional baud rate:

```
38400 Hz./16 = 2400 baud
38400 Hz./64 = 600 baud
19200 Hz./16 = 1200 baud
19200 Hz./64 = 300 baud
```

Figure 2 shows how these clock frequencies will be generated. The CD4024 is a 7 -bit binary counter, and the CD4068 is an 8 -input AND/NAND gate used to decode the counter output lines. The clock input to the counter is

Figure 2. Counter and switched decoder circuit generates baud rate clock signals.
the 6809 " E " clock which runs at 895 kHz . Table 2 shows which counter outputs need to be decoded to generate the two frequencies. Note that three outputs are common between the two decoding schemes, so three counter outputs need to be selected or deselected to program the counter.

TABLE 2 - Counter Coding

$895 \mathrm{kHz} / 23=$ approx 38400 Hz
$895 \mathrm{kHz} / 46=$ approx .19200 Hz

$$
\begin{aligned}
& 23=\$ 17=00010111 \\
& 46=\$ 2 F=00101 \mathrm{ll1}
\end{aligned}
$$

Decode bits 0,1 and 2 are common; Bits 3, 4 and 5 must be switched to select frequency.

ACIA and VIA Decoding

Table 3 shows the decoding requirements for the 6522 VIA and the 6850 ACIA. The ACIA occupies only two memory locations and the VIA occupies 16 memory locations. You read the chart this way: CS (Chip Select) lines are shown true for a selected chip; any change will deselect the chip. An active-low CS line is typically driven by the decoder, while others are permanently selected or driven by a higher-order address line. RS lines work together to select individual registers, and are usually driven by low-order address lines. The ACIA uses the RS and R/W* lines together to cram four registers into two address bytes. The price is that each register is read-only or write-only, which complicates the programming as will be discussed later.

TABLE 3 - I/O Address Decoding
6850 ACIA

Register	RS	R- $/ W^{*}$	CS0	CS1	CS2*

6522 VIA

Register	CS1	CS2* RS3		RS2	RS1	RS0
I/O Reg B	1	0	0	0	0	0
I/O Reg A	1	0	0	0	0	1
DD Reg B	1	0	0	0	1	0
DD Reg A	1	0	0	0	1	1
Counter 1 Lo	1	0	0	1	0	0
Counter 1 Hi	1	0	0	1	0	1
Ctrl Latch Lo 1	0	0	1	1	0	
Ctrl Latch H1 1	0	0	1	1	1	
Counter 2 Lo	1	0	1	0	0	0
Counter Hi	1	0	1	0	0	1
Shift Reg	1	0	1	0	1	0
Aux Ctl Reg	1	0	1	0	1	1
Per Ctl Reg	1	0	1	1	0	0
Int Flg Reg	1	0	1	1	0	1
Int Ena Reg	1	1	1	1	0	
I/O A/NH	1	0	1	1	1	$1 S 1$

Figure 3 shows a 74LS138 decoder with the required connections to create memory "slots' for a number of I/O devices, and defines the memory locations for the VIA, ACIAs and a latch to be used on the interface. The 74LS138 is a three-line to eight-line decoder which has one active-high SELECT line (G1) and two active-low SELECT lines (G2A and G2B). If all the SELECT lines are true, the output addressed by the binary values on the three input lines (A, B and C) is active-low; all others are inactive. If any of the SELECT lines are false, all outputs are inactive. The primary SELECT is SCS*, which must be low (G2A). By requiring Bit 7 to be low $(\mathrm{G} 2 \mathrm{~B})$, the decoder is inactive above \$FF7F. With Bit 6 driving G1 and C, only the outputs $4,5,6$ and 7 will be active. The selected devices and the effective addresses are shown in Figure 3. Note that the VIA entirely fills its assigned slot, but that the other devices will respond multiple times in their own slots.

Figure 3. 74LS138 decoder circuit with resulting memory blocks and assigned function.

Title: Overcoming Computer Illiteracy Authors: Susan Curran and Ray Curnow Price: $\$ 12.95$

Publisher: Viking Penguin Inc.

Written for those who have no previous knowledge of computers, this is Penguin's first foray into computerrelated books. It is divided into five sections: Aspects of Modern Computer Technology, Manipulating Symbols, Development of the Computer - An Historical Perspective, Programming and Languages, Applications of Larger-Scale Computer Systems. The style of the writing is narrative, with no requirement of previous knowledge of computers, mathematics, or electronics. Simple programs are provided that can be used by beginners. The basic principles of data storage and manipulation are explained. The 6502 chip is chosen as an example for discussing the basic components and workings of microprocessor chips. Languages examined include machine language, BASIC, FORTRAN, COBOL and other high-level languages. Computer aided design, artificial intelligence, meteorological uses are among the applications discussed. A glossary and bibliography are provided. Points are illustrated through drawings, charts and tables.

Level: Beginner.

Title: Introducing the Acorn/BBC Micro
Author: Ian Sinclair
Price: $\$ 12.95$
Publisher: Prentice-Hall, Inc.
Mr. Sinclair draws upon his many years of experience as a teacher and author in writing this introduction to the Acorn. As stated by the author, the Acorn was designed to a very advanced specification. Bearing this in mind he set to teach a beginner on a machine not well suited to beginners. The book is aimed at this level and makes no pretenses otherwise. Starting with instructions on how to set up your new Acorn, everything from tuning your TV to dealing with cables is dealt with. The programming concentrates on BASIC, neglecting those commands that might be common to other micros but are not part of the Acorn. The fundamentals of sound, graphics and color are shown, omitting those details that are too technical to be of use to a beginner. This approach of avoiding overly technical and lengthly discussions carries throughout the book. The examples are short and concise, saving the beginner from unnecessary confusion. The appendices cover Reserved Words, Cassette Capers, Appending Programs, Magazines and User Groups, and the Cassette Bug Fix. The latter is aimed at correcting a bug present in the 0.1 system's cassette. The book and programs are useful for both the 0.1 and the newer 1.2 operating system.

Title: 8-Bit \& 16-Bit Microprocesser Cookbook
Author: Joseph J. Carr
Price: $\$ 13.50$
Publisher: Tab Books, Inc.
A reference and sourcebook that guides the reader in the technical realm of microprocessors. Offering much valuable information that is not easily found elsewhere, a variety of topics are covered: architecture, individual chip characteristics, handling of interrupts, timing, control signals, interfacing memory, pinouts, variations, interfacing I/O and the instruction sets. Of the different 8 and 16-bit microprocessors examined, the Z 80 and 6502 are given particular attention and detail. Other 8 -bit chips covered are Motorola's 6809 and 6800 and Intel's 8080A, $8085 \mathrm{~A}, 8086$, and 8088 . The two 16 -bit microprocessors that are given the most attention are the MC68000, Motorola's bid for the 16 -bit market, and Intel's iAPX86/10. The appendices look at address decoder circuits and techniques, generating device-select pulses, input/output devices, and low-voltage DC power supplies. Certainly this field is too vast for this book to be comprehensive, but it definitely provides the reader with enough information to become knowledgable about these more popular microprocessors.

Level: Intermediate to advanced

Title: The Anatomy of the Commodore
Authors: Michael Angerhausen, Dr. Achim Becker, Lothar Englisch and Klaus Gerits
Price: $\$ 19.95$
Publisher: Abacus Software
Starting with machine language programming, this look at the C64 as an all-around computer is a valuable guide. It begins with the Monitor and its uses, naturally progressing into the in's and out's of machine language programming. Then assembler programming is discussed, with a table of 6510 commands. Next, a more in-depth look is taken into memory configurations, the expansion and user ports and other special features of the 6510 microprocessor. Sound and graphics programming are covered, examining the Sound Controller 6581 and the Video Interface Chip 6567. The Analog/Digital Converter is explained, along with how to handle it. Sprite graphics are discussed in some detail, including capabilities, structure, and programming. The BASIC interpreter is viewed from a number of vantage points. A comparison table of Vic-20, C64 and CBM/PET ROM addresses is provided. The last chapter deals with input/output control - CIA 6526. The appendices consist of a ROM listing, a short lesson in Hexadecimal arithmetic, a summary of capabilities and a bibliography.

Name: Enstat Printer Mat

Description: Dissipates static and absorbs sound and vibration from printers, electronic typewriters, etc. This single layer mat's positive static drain to ground functions in all temperatures and humidity conditions found in office or home environment and works with people and other conductive objects as well as machines. Sized to fit most tabletop equipment ($18^{\prime \prime} \times 22^{\prime \prime}$), it has a 10 ft . ground cord with one megohm resistor.

A "bottom feed" design allows printer paper to pass over the mat edge, discharging static before it enters the printer.

Price: $\$ 44.95$
Available: Semtronics
P.O. Box 599

Scotch Plains, NJ 07076
201/561-9520

Name: McMill
System: Apple II, II + , He
Description: This 68000 coprocessor card is an excellent entry level educational board for those interested in working the 68000. It uses Motorola's 60008 processor which is totally code compatible with 68000 .

Included are complete hardware documentation, schemata, and a FIG FORTH software. Optional software includes a 68000 cross assembler from SC Software which includes efficient debugging of code with simple trap monitor and builtin line oriented editor, and an enhanced screen editor for faster programming. McMill comes with a one-year hardware warranty.
Price: $\quad \$ 229$ (\$299 with Assembler|
Available: Stellation Two
P.O. Box 2342

Santa Barbara, CA 93120 805/966-1140

Name:
Flexible Head Cleaning Disk
Hardware:
$8^{\prime \prime}, 51 / 4^{\prime \prime}$, or $31 / 2^{\prime \prime}$ drive
Description: A floppy disk head cleaner that dry cleans without abrasives and requires no liquid solution which might leave residue. Removes Ferric Oxide contamination and traps debris internally in special pockets. Just insert into drive and run for 30-60 seconds weekly. Each Disk provides 30 cleanings at about $\$ 83$ per cleaning. Available in three sizes.

Price: $\quad \$ 24.95$ (5 1/4' disk)
Available: Vikor Company
P.O. Box 3123

Nashua, NH 03061
603/889-8530

$\begin{array}{ll}\text { Name: } & \text { Bank President } \\ \text { System: } & \text { Apple II, IIe, IIc, } \\ & \text { Macintosh, IBM }\end{array}$
Description: This first title in a series is designed to teach the fundamentals of business strategy and decision making through roleplaying games. As CEO , the player formulates strategy and makes decisions that determine how well the company performs. Users can play the game alone, against the computer, or in competition with other players. Actions of one competitor can affect the performance of another, as in real life. Players are CEO of a large commercial bank of any type they want, setting loan and dedposit interest rates, raising or lowering employee salaries, investing capital and opening branches. Over 70 charts and graphs keep the player informed of the economy, bank conditions and competitors' actions. There are three levels of play.

High-Tech Entrepreneur and Venture Capitalist are the next two titles due in the series.
Price: $\quad \$ 74.95$
Available: Lewis Lee Corp.
P.O. Box 51831

Palo Alto, CA 94303
415/853-1220

Name: System:

Simulated Computer

Description: An award-winning simulation of the inner workings of a computer. The program takes you on a trip through an imaginary computer, revealing the secrets of machine and assembly language programming. You create a program and then see and hear the flow of data as it travels into memory, as registers are modified, and as the CPU processes information. The package has programmable sound and a graphics "turtle screen."

```
Price: $
Available: EduSoft
    P.O. Box 2560
    Berkeley, CA 94702
    1-800-EDUSOFT
```

Name: Flying Colors
System: Commodore 64 (also
Apple IIe/II + versions) Hardware: Joystick
Description: A color graphics software package designed for use with a standard joystick. A windowed screen menu lets the user pick the desired functions for drawing. Choices include thick and thin lines, automatic circles and boxes of any size, erasures, and ability to fill enclosed areas with a variety of colors. Drawing speed can be adjusted for exacting detail work and different colors and brush sizes are available for painting. Text can be added anywhere to the screen and
 a grid helps align the pictures. Pictures can be saved and retrieved from disk.

A sophisticated Slide Projector program is also included so users can create their own slide shows for business presentations and recreation.

```
Price: $39.95
Available: The Computer
    Colorworks
    3 0 3 0 ~ B r i d g e w a y ~
    Sausalito, CA 94965
    415/331-3022
```


Advertiser＇s Index

```
Ratterice lochaded
Computer Conlorwork 
Computer Mail Order
Computerone
Educoft
Hudbome[)igtal Elcotrmmich
OQB Enterprinch
LCwに Lec
MICRO
Muco)(rall(orp)
Micro-W Distrihuting
Mitwost Micros
Nikrom Techmical Product
Pcrtormance Micro
[rocce:%
Ouantam Soltware
Schmedler Svenema
Semeronic⿱⿰㇒一十凵
SkylesElcotric Work
Spcebalor Electronic⿱
Scelatiun Twa
Such-A-Dcal Sontware
Torl Softuare
Tr.mbamour
Vikis(0
%
```


Coming in September－

As announced in previous editorials，MICRO is extending its coverage into some new areas，some of which are represented in the September issue by
\square An Introduction to FORTH， by Kenneth Butterfield
The basic whys and wherefores of this language
\square A Structure Tree Utility in FORTH，
by Mike Dougherty
Produces＇＂road－maps＇of FORTH applications
\square Multi－Tasking in FORTH，
by Kenneth Butterfield
How to implement a Multi－Tasking system
$\square 68000$ Exception Processing－Part 1， by Mike Rosing
Taking care of software and hardware＇exceptions＇
Our coverage of the 6502／6809 world continucs with：
\square Graphic Printer for C64－Part 3，
by Michael Keryan
Add full color capabilities to your printer
\square Time Series Forecasting，
by Brian Flynn
Programs to forecast＇The Market＇，weather，

This famous book now contains the most comprehensive description of firmware and hardware ever published for the whole Apple $1 /$ family. A new section with guide, atlas and gazeteer now provides Apple lle specific information.

- Gives names and locations of various Monitor, DOS, Integer BASIC and Applesoft routines and tells what they're used for
- Lists Peeks, Pokes and Calls in over 2000 memory locations
- Allows easy movement between BASIC and Machine Language
- Explains how to use the information for easier, better, faster software writing

This expanded edition is available at the new low price of only $\$ 19.95$
For the 35,000 people who already own previous editions, the lie Appendix is available separately for just $\$ 5.00$.

Parental guidance suggested.

[^0]: Add $\$ 3.00$ for shipping, handling and insurance. Illinois residents please add 6% tox. Add $\$ 6.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA. APO.FPO orders. Conadion orders must be in U.S. dollors. WE DO NOT EXPORT TO OTHER COUNTRIES
 Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 doys for phone orders. 1 doy express mail! VISA - MASTER CARD - C.O.D.

[^1]: Add $\$ 50.00$ for shipping and handling!! $\$ 100.00$ for Canada, Puerto Rico, Hawaii orders. WE DO NOT EXPORT TO OTHER COUNTRIES. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express | mail! Canada orders must be in U.S dollars. We accept Visa and MasterCard. We ship C.O.D. to US addresses only.

[^2]: - LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY - BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

[^3]: TAdd $\$ 10.00$ for shipping, handiling and insurance. Illinols residents | please add 6% tax. Add $\$ 20.00$ tor CANADA, PUERTO RICO, HAWAll | \| orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
 | Enclose Cashiers Check. Money Order or Personal Cneck. Allow 14 | | days for delivery, 2 to 7 days for phone orders. 1 day express mail! |

